| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bndth.1 |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
|
bndth.2 |
⊢ 𝐾 = ( topGen ‘ ran (,) ) |
| 3 |
|
bndth.3 |
⊢ ( 𝜑 → 𝐽 ∈ Comp ) |
| 4 |
|
bndth.4 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 5 |
|
retopon |
⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) |
| 6 |
2 5
|
eqeltri |
⊢ 𝐾 ∈ ( TopOn ‘ ℝ ) |
| 7 |
6
|
toponunii |
⊢ ℝ = ∪ 𝐾 |
| 8 |
1 7
|
cnf |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : 𝑋 ⟶ ℝ ) |
| 9 |
4 8
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℝ ) |
| 10 |
9
|
frnd |
⊢ ( 𝜑 → ran 𝐹 ⊆ ℝ ) |
| 11 |
|
unieq |
⊢ ( 𝑢 = ( (,) “ ( { -∞ } × ℝ ) ) → ∪ 𝑢 = ∪ ( (,) “ ( { -∞ } × ℝ ) ) ) |
| 12 |
|
imassrn |
⊢ ( (,) “ ( { -∞ } × ℝ ) ) ⊆ ran (,) |
| 13 |
12
|
unissi |
⊢ ∪ ( (,) “ ( { -∞ } × ℝ ) ) ⊆ ∪ ran (,) |
| 14 |
|
unirnioo |
⊢ ℝ = ∪ ran (,) |
| 15 |
13 14
|
sseqtrri |
⊢ ∪ ( (,) “ ( { -∞ } × ℝ ) ) ⊆ ℝ |
| 16 |
|
id |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ ) |
| 17 |
|
ltp1 |
⊢ ( 𝑥 ∈ ℝ → 𝑥 < ( 𝑥 + 1 ) ) |
| 18 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
| 19 |
|
peano2re |
⊢ ( 𝑥 ∈ ℝ → ( 𝑥 + 1 ) ∈ ℝ ) |
| 20 |
18 19
|
sselid |
⊢ ( 𝑥 ∈ ℝ → ( 𝑥 + 1 ) ∈ ℝ* ) |
| 21 |
|
elioomnf |
⊢ ( ( 𝑥 + 1 ) ∈ ℝ* → ( 𝑥 ∈ ( -∞ (,) ( 𝑥 + 1 ) ) ↔ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( 𝑥 + 1 ) ) ) ) |
| 22 |
20 21
|
syl |
⊢ ( 𝑥 ∈ ℝ → ( 𝑥 ∈ ( -∞ (,) ( 𝑥 + 1 ) ) ↔ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( 𝑥 + 1 ) ) ) ) |
| 23 |
16 17 22
|
mpbir2and |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ( -∞ (,) ( 𝑥 + 1 ) ) ) |
| 24 |
|
df-ov |
⊢ ( -∞ (,) ( 𝑥 + 1 ) ) = ( (,) ‘ 〈 -∞ , ( 𝑥 + 1 ) 〉 ) |
| 25 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 26 |
25
|
elexi |
⊢ -∞ ∈ V |
| 27 |
26
|
snid |
⊢ -∞ ∈ { -∞ } |
| 28 |
|
opelxpi |
⊢ ( ( -∞ ∈ { -∞ } ∧ ( 𝑥 + 1 ) ∈ ℝ ) → 〈 -∞ , ( 𝑥 + 1 ) 〉 ∈ ( { -∞ } × ℝ ) ) |
| 29 |
27 19 28
|
sylancr |
⊢ ( 𝑥 ∈ ℝ → 〈 -∞ , ( 𝑥 + 1 ) 〉 ∈ ( { -∞ } × ℝ ) ) |
| 30 |
|
ioof |
⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ |
| 31 |
|
ffun |
⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → Fun (,) ) |
| 32 |
30 31
|
ax-mp |
⊢ Fun (,) |
| 33 |
|
snssi |
⊢ ( -∞ ∈ ℝ* → { -∞ } ⊆ ℝ* ) |
| 34 |
25 33
|
ax-mp |
⊢ { -∞ } ⊆ ℝ* |
| 35 |
|
xpss12 |
⊢ ( ( { -∞ } ⊆ ℝ* ∧ ℝ ⊆ ℝ* ) → ( { -∞ } × ℝ ) ⊆ ( ℝ* × ℝ* ) ) |
| 36 |
34 18 35
|
mp2an |
⊢ ( { -∞ } × ℝ ) ⊆ ( ℝ* × ℝ* ) |
| 37 |
30
|
fdmi |
⊢ dom (,) = ( ℝ* × ℝ* ) |
| 38 |
36 37
|
sseqtrri |
⊢ ( { -∞ } × ℝ ) ⊆ dom (,) |
| 39 |
|
funfvima2 |
⊢ ( ( Fun (,) ∧ ( { -∞ } × ℝ ) ⊆ dom (,) ) → ( 〈 -∞ , ( 𝑥 + 1 ) 〉 ∈ ( { -∞ } × ℝ ) → ( (,) ‘ 〈 -∞ , ( 𝑥 + 1 ) 〉 ) ∈ ( (,) “ ( { -∞ } × ℝ ) ) ) ) |
| 40 |
32 38 39
|
mp2an |
⊢ ( 〈 -∞ , ( 𝑥 + 1 ) 〉 ∈ ( { -∞ } × ℝ ) → ( (,) ‘ 〈 -∞ , ( 𝑥 + 1 ) 〉 ) ∈ ( (,) “ ( { -∞ } × ℝ ) ) ) |
| 41 |
29 40
|
syl |
⊢ ( 𝑥 ∈ ℝ → ( (,) ‘ 〈 -∞ , ( 𝑥 + 1 ) 〉 ) ∈ ( (,) “ ( { -∞ } × ℝ ) ) ) |
| 42 |
24 41
|
eqeltrid |
⊢ ( 𝑥 ∈ ℝ → ( -∞ (,) ( 𝑥 + 1 ) ) ∈ ( (,) “ ( { -∞ } × ℝ ) ) ) |
| 43 |
|
elunii |
⊢ ( ( 𝑥 ∈ ( -∞ (,) ( 𝑥 + 1 ) ) ∧ ( -∞ (,) ( 𝑥 + 1 ) ) ∈ ( (,) “ ( { -∞ } × ℝ ) ) ) → 𝑥 ∈ ∪ ( (,) “ ( { -∞ } × ℝ ) ) ) |
| 44 |
23 42 43
|
syl2anc |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ∪ ( (,) “ ( { -∞ } × ℝ ) ) ) |
| 45 |
44
|
ssriv |
⊢ ℝ ⊆ ∪ ( (,) “ ( { -∞ } × ℝ ) ) |
| 46 |
15 45
|
eqssi |
⊢ ∪ ( (,) “ ( { -∞ } × ℝ ) ) = ℝ |
| 47 |
11 46
|
eqtrdi |
⊢ ( 𝑢 = ( (,) “ ( { -∞ } × ℝ ) ) → ∪ 𝑢 = ℝ ) |
| 48 |
47
|
sseq2d |
⊢ ( 𝑢 = ( (,) “ ( { -∞ } × ℝ ) ) → ( ran 𝐹 ⊆ ∪ 𝑢 ↔ ran 𝐹 ⊆ ℝ ) ) |
| 49 |
|
pweq |
⊢ ( 𝑢 = ( (,) “ ( { -∞ } × ℝ ) ) → 𝒫 𝑢 = 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ) |
| 50 |
49
|
ineq1d |
⊢ ( 𝑢 = ( (,) “ ( { -∞ } × ℝ ) ) → ( 𝒫 𝑢 ∩ Fin ) = ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) |
| 51 |
50
|
rexeqdv |
⊢ ( 𝑢 = ( (,) “ ( { -∞ } × ℝ ) ) → ( ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ran 𝐹 ⊆ ∪ 𝑣 ↔ ∃ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ran 𝐹 ⊆ ∪ 𝑣 ) ) |
| 52 |
48 51
|
imbi12d |
⊢ ( 𝑢 = ( (,) “ ( { -∞ } × ℝ ) ) → ( ( ran 𝐹 ⊆ ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ran 𝐹 ⊆ ∪ 𝑣 ) ↔ ( ran 𝐹 ⊆ ℝ → ∃ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ran 𝐹 ⊆ ∪ 𝑣 ) ) ) |
| 53 |
|
rncmp |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝐾 ↾t ran 𝐹 ) ∈ Comp ) |
| 54 |
3 4 53
|
syl2anc |
⊢ ( 𝜑 → ( 𝐾 ↾t ran 𝐹 ) ∈ Comp ) |
| 55 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
| 56 |
2 55
|
eqeltri |
⊢ 𝐾 ∈ Top |
| 57 |
7
|
cmpsub |
⊢ ( ( 𝐾 ∈ Top ∧ ran 𝐹 ⊆ ℝ ) → ( ( 𝐾 ↾t ran 𝐹 ) ∈ Comp ↔ ∀ 𝑢 ∈ 𝒫 𝐾 ( ran 𝐹 ⊆ ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ran 𝐹 ⊆ ∪ 𝑣 ) ) ) |
| 58 |
56 10 57
|
sylancr |
⊢ ( 𝜑 → ( ( 𝐾 ↾t ran 𝐹 ) ∈ Comp ↔ ∀ 𝑢 ∈ 𝒫 𝐾 ( ran 𝐹 ⊆ ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ran 𝐹 ⊆ ∪ 𝑣 ) ) ) |
| 59 |
54 58
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝒫 𝐾 ( ran 𝐹 ⊆ ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ran 𝐹 ⊆ ∪ 𝑣 ) ) |
| 60 |
|
retopbas |
⊢ ran (,) ∈ TopBases |
| 61 |
|
bastg |
⊢ ( ran (,) ∈ TopBases → ran (,) ⊆ ( topGen ‘ ran (,) ) ) |
| 62 |
60 61
|
ax-mp |
⊢ ran (,) ⊆ ( topGen ‘ ran (,) ) |
| 63 |
62 2
|
sseqtrri |
⊢ ran (,) ⊆ 𝐾 |
| 64 |
12 63
|
sstri |
⊢ ( (,) “ ( { -∞ } × ℝ ) ) ⊆ 𝐾 |
| 65 |
56 64
|
elpwi2 |
⊢ ( (,) “ ( { -∞ } × ℝ ) ) ∈ 𝒫 𝐾 |
| 66 |
65
|
a1i |
⊢ ( 𝜑 → ( (,) “ ( { -∞ } × ℝ ) ) ∈ 𝒫 𝐾 ) |
| 67 |
52 59 66
|
rspcdva |
⊢ ( 𝜑 → ( ran 𝐹 ⊆ ℝ → ∃ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ran 𝐹 ⊆ ∪ 𝑣 ) ) |
| 68 |
10 67
|
mpd |
⊢ ( 𝜑 → ∃ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ran 𝐹 ⊆ ∪ 𝑣 ) |
| 69 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) → 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) |
| 70 |
|
elin |
⊢ ( 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ↔ ( 𝑣 ∈ 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∧ 𝑣 ∈ Fin ) ) |
| 71 |
69 70
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) → ( 𝑣 ∈ 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∧ 𝑣 ∈ Fin ) ) |
| 72 |
71
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ∧ ran 𝐹 ⊆ ∪ 𝑣 ) ) → ( 𝑣 ∈ 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∧ 𝑣 ∈ Fin ) ) |
| 73 |
72
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ∧ ran 𝐹 ⊆ ∪ 𝑣 ) ) → 𝑣 ∈ Fin ) |
| 74 |
71
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) → 𝑣 ∈ 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ) |
| 75 |
74
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) → 𝑣 ⊆ ( (,) “ ( { -∞ } × ℝ ) ) ) |
| 76 |
34
|
sseli |
⊢ ( 𝑢 ∈ { -∞ } → 𝑢 ∈ ℝ* ) |
| 77 |
76
|
adantr |
⊢ ( ( 𝑢 ∈ { -∞ } ∧ 𝑤 ∈ ℝ ) → 𝑢 ∈ ℝ* ) |
| 78 |
18
|
sseli |
⊢ ( 𝑤 ∈ ℝ → 𝑤 ∈ ℝ* ) |
| 79 |
78
|
adantl |
⊢ ( ( 𝑢 ∈ { -∞ } ∧ 𝑤 ∈ ℝ ) → 𝑤 ∈ ℝ* ) |
| 80 |
|
mnflt |
⊢ ( 𝑤 ∈ ℝ → -∞ < 𝑤 ) |
| 81 |
|
xrltnle |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( -∞ < 𝑤 ↔ ¬ 𝑤 ≤ -∞ ) ) |
| 82 |
25 78 81
|
sylancr |
⊢ ( 𝑤 ∈ ℝ → ( -∞ < 𝑤 ↔ ¬ 𝑤 ≤ -∞ ) ) |
| 83 |
80 82
|
mpbid |
⊢ ( 𝑤 ∈ ℝ → ¬ 𝑤 ≤ -∞ ) |
| 84 |
83
|
adantl |
⊢ ( ( 𝑢 ∈ { -∞ } ∧ 𝑤 ∈ ℝ ) → ¬ 𝑤 ≤ -∞ ) |
| 85 |
|
elsni |
⊢ ( 𝑢 ∈ { -∞ } → 𝑢 = -∞ ) |
| 86 |
85
|
adantr |
⊢ ( ( 𝑢 ∈ { -∞ } ∧ 𝑤 ∈ ℝ ) → 𝑢 = -∞ ) |
| 87 |
86
|
breq2d |
⊢ ( ( 𝑢 ∈ { -∞ } ∧ 𝑤 ∈ ℝ ) → ( 𝑤 ≤ 𝑢 ↔ 𝑤 ≤ -∞ ) ) |
| 88 |
84 87
|
mtbird |
⊢ ( ( 𝑢 ∈ { -∞ } ∧ 𝑤 ∈ ℝ ) → ¬ 𝑤 ≤ 𝑢 ) |
| 89 |
|
ioo0 |
⊢ ( ( 𝑢 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( ( 𝑢 (,) 𝑤 ) = ∅ ↔ 𝑤 ≤ 𝑢 ) ) |
| 90 |
76 78 89
|
syl2an |
⊢ ( ( 𝑢 ∈ { -∞ } ∧ 𝑤 ∈ ℝ ) → ( ( 𝑢 (,) 𝑤 ) = ∅ ↔ 𝑤 ≤ 𝑢 ) ) |
| 91 |
90
|
necon3abid |
⊢ ( ( 𝑢 ∈ { -∞ } ∧ 𝑤 ∈ ℝ ) → ( ( 𝑢 (,) 𝑤 ) ≠ ∅ ↔ ¬ 𝑤 ≤ 𝑢 ) ) |
| 92 |
88 91
|
mpbird |
⊢ ( ( 𝑢 ∈ { -∞ } ∧ 𝑤 ∈ ℝ ) → ( 𝑢 (,) 𝑤 ) ≠ ∅ ) |
| 93 |
|
df-ioo |
⊢ (,) = ( 𝑦 ∈ ℝ* , 𝑧 ∈ ℝ* ↦ { 𝑣 ∈ ℝ* ∣ ( 𝑦 < 𝑣 ∧ 𝑣 < 𝑧 ) } ) |
| 94 |
|
idd |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝑥 < 𝑤 → 𝑥 < 𝑤 ) ) |
| 95 |
|
xrltle |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝑥 < 𝑤 → 𝑥 ≤ 𝑤 ) ) |
| 96 |
|
idd |
⊢ ( ( 𝑢 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( 𝑢 < 𝑥 → 𝑢 < 𝑥 ) ) |
| 97 |
|
xrltle |
⊢ ( ( 𝑢 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( 𝑢 < 𝑥 → 𝑢 ≤ 𝑥 ) ) |
| 98 |
93 94 95 96 97
|
ixxub |
⊢ ( ( 𝑢 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ∧ ( 𝑢 (,) 𝑤 ) ≠ ∅ ) → sup ( ( 𝑢 (,) 𝑤 ) , ℝ* , < ) = 𝑤 ) |
| 99 |
77 79 92 98
|
syl3anc |
⊢ ( ( 𝑢 ∈ { -∞ } ∧ 𝑤 ∈ ℝ ) → sup ( ( 𝑢 (,) 𝑤 ) , ℝ* , < ) = 𝑤 ) |
| 100 |
|
simpr |
⊢ ( ( 𝑢 ∈ { -∞ } ∧ 𝑤 ∈ ℝ ) → 𝑤 ∈ ℝ ) |
| 101 |
99 100
|
eqeltrd |
⊢ ( ( 𝑢 ∈ { -∞ } ∧ 𝑤 ∈ ℝ ) → sup ( ( 𝑢 (,) 𝑤 ) , ℝ* , < ) ∈ ℝ ) |
| 102 |
101
|
rgen2 |
⊢ ∀ 𝑢 ∈ { -∞ } ∀ 𝑤 ∈ ℝ sup ( ( 𝑢 (,) 𝑤 ) , ℝ* , < ) ∈ ℝ |
| 103 |
|
fveq2 |
⊢ ( 𝑧 = 〈 𝑢 , 𝑤 〉 → ( (,) ‘ 𝑧 ) = ( (,) ‘ 〈 𝑢 , 𝑤 〉 ) ) |
| 104 |
|
df-ov |
⊢ ( 𝑢 (,) 𝑤 ) = ( (,) ‘ 〈 𝑢 , 𝑤 〉 ) |
| 105 |
103 104
|
eqtr4di |
⊢ ( 𝑧 = 〈 𝑢 , 𝑤 〉 → ( (,) ‘ 𝑧 ) = ( 𝑢 (,) 𝑤 ) ) |
| 106 |
105
|
supeq1d |
⊢ ( 𝑧 = 〈 𝑢 , 𝑤 〉 → sup ( ( (,) ‘ 𝑧 ) , ℝ* , < ) = sup ( ( 𝑢 (,) 𝑤 ) , ℝ* , < ) ) |
| 107 |
106
|
eleq1d |
⊢ ( 𝑧 = 〈 𝑢 , 𝑤 〉 → ( sup ( ( (,) ‘ 𝑧 ) , ℝ* , < ) ∈ ℝ ↔ sup ( ( 𝑢 (,) 𝑤 ) , ℝ* , < ) ∈ ℝ ) ) |
| 108 |
107
|
ralxp |
⊢ ( ∀ 𝑧 ∈ ( { -∞ } × ℝ ) sup ( ( (,) ‘ 𝑧 ) , ℝ* , < ) ∈ ℝ ↔ ∀ 𝑢 ∈ { -∞ } ∀ 𝑤 ∈ ℝ sup ( ( 𝑢 (,) 𝑤 ) , ℝ* , < ) ∈ ℝ ) |
| 109 |
102 108
|
mpbir |
⊢ ∀ 𝑧 ∈ ( { -∞ } × ℝ ) sup ( ( (,) ‘ 𝑧 ) , ℝ* , < ) ∈ ℝ |
| 110 |
|
ffn |
⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) ) |
| 111 |
30 110
|
ax-mp |
⊢ (,) Fn ( ℝ* × ℝ* ) |
| 112 |
|
supeq1 |
⊢ ( 𝑤 = ( (,) ‘ 𝑧 ) → sup ( 𝑤 , ℝ* , < ) = sup ( ( (,) ‘ 𝑧 ) , ℝ* , < ) ) |
| 113 |
112
|
eleq1d |
⊢ ( 𝑤 = ( (,) ‘ 𝑧 ) → ( sup ( 𝑤 , ℝ* , < ) ∈ ℝ ↔ sup ( ( (,) ‘ 𝑧 ) , ℝ* , < ) ∈ ℝ ) ) |
| 114 |
113
|
ralima |
⊢ ( ( (,) Fn ( ℝ* × ℝ* ) ∧ ( { -∞ } × ℝ ) ⊆ ( ℝ* × ℝ* ) ) → ( ∀ 𝑤 ∈ ( (,) “ ( { -∞ } × ℝ ) ) sup ( 𝑤 , ℝ* , < ) ∈ ℝ ↔ ∀ 𝑧 ∈ ( { -∞ } × ℝ ) sup ( ( (,) ‘ 𝑧 ) , ℝ* , < ) ∈ ℝ ) ) |
| 115 |
111 36 114
|
mp2an |
⊢ ( ∀ 𝑤 ∈ ( (,) “ ( { -∞ } × ℝ ) ) sup ( 𝑤 , ℝ* , < ) ∈ ℝ ↔ ∀ 𝑧 ∈ ( { -∞ } × ℝ ) sup ( ( (,) ‘ 𝑧 ) , ℝ* , < ) ∈ ℝ ) |
| 116 |
109 115
|
mpbir |
⊢ ∀ 𝑤 ∈ ( (,) “ ( { -∞ } × ℝ ) ) sup ( 𝑤 , ℝ* , < ) ∈ ℝ |
| 117 |
|
ssralv |
⊢ ( 𝑣 ⊆ ( (,) “ ( { -∞ } × ℝ ) ) → ( ∀ 𝑤 ∈ ( (,) “ ( { -∞ } × ℝ ) ) sup ( 𝑤 , ℝ* , < ) ∈ ℝ → ∀ 𝑤 ∈ 𝑣 sup ( 𝑤 , ℝ* , < ) ∈ ℝ ) ) |
| 118 |
75 116 117
|
mpisyl |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) → ∀ 𝑤 ∈ 𝑣 sup ( 𝑤 , ℝ* , < ) ∈ ℝ ) |
| 119 |
118
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ∧ ran 𝐹 ⊆ ∪ 𝑣 ) ) → ∀ 𝑤 ∈ 𝑣 sup ( 𝑤 , ℝ* , < ) ∈ ℝ ) |
| 120 |
|
fimaxre3 |
⊢ ( ( 𝑣 ∈ Fin ∧ ∀ 𝑤 ∈ 𝑣 sup ( 𝑤 , ℝ* , < ) ∈ ℝ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑣 sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) |
| 121 |
73 119 120
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ∧ ran 𝐹 ⊆ ∪ 𝑣 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑣 sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) |
| 122 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ∧ ran 𝐹 ⊆ ∪ 𝑣 ) ) ∧ 𝑥 ∈ ℝ ) → ran 𝐹 ⊆ ∪ 𝑣 ) |
| 123 |
122
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ∧ ran 𝐹 ⊆ ∪ 𝑣 ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑧 ∈ ran 𝐹 ) → 𝑧 ∈ ∪ 𝑣 ) |
| 124 |
|
eluni2 |
⊢ ( 𝑧 ∈ ∪ 𝑣 ↔ ∃ 𝑤 ∈ 𝑣 𝑧 ∈ 𝑤 ) |
| 125 |
|
r19.29r |
⊢ ( ( ∃ 𝑤 ∈ 𝑣 𝑧 ∈ 𝑤 ∧ ∀ 𝑤 ∈ 𝑣 sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) → ∃ 𝑤 ∈ 𝑣 ( 𝑧 ∈ 𝑤 ∧ sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) ) |
| 126 |
|
sspwuni |
⊢ ( ( (,) “ ( { -∞ } × ℝ ) ) ⊆ 𝒫 ℝ ↔ ∪ ( (,) “ ( { -∞ } × ℝ ) ) ⊆ ℝ ) |
| 127 |
15 126
|
mpbir |
⊢ ( (,) “ ( { -∞ } × ℝ ) ) ⊆ 𝒫 ℝ |
| 128 |
75
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ 𝑣 ) ∧ ( 𝑧 ∈ 𝑤 ∧ sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) ) → 𝑣 ⊆ ( (,) “ ( { -∞ } × ℝ ) ) ) |
| 129 |
|
simp2r |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ 𝑣 ) ∧ ( 𝑧 ∈ 𝑤 ∧ sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) ) → 𝑤 ∈ 𝑣 ) |
| 130 |
128 129
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ 𝑣 ) ∧ ( 𝑧 ∈ 𝑤 ∧ sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) ) → 𝑤 ∈ ( (,) “ ( { -∞ } × ℝ ) ) ) |
| 131 |
127 130
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ 𝑣 ) ∧ ( 𝑧 ∈ 𝑤 ∧ sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) ) → 𝑤 ∈ 𝒫 ℝ ) |
| 132 |
131
|
elpwid |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ 𝑣 ) ∧ ( 𝑧 ∈ 𝑤 ∧ sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) ) → 𝑤 ⊆ ℝ ) |
| 133 |
|
simp3l |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ 𝑣 ) ∧ ( 𝑧 ∈ 𝑤 ∧ sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) ) → 𝑧 ∈ 𝑤 ) |
| 134 |
132 133
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ 𝑣 ) ∧ ( 𝑧 ∈ 𝑤 ∧ sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) ) → 𝑧 ∈ ℝ ) |
| 135 |
118
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) ∧ 𝑤 ∈ 𝑣 ) → sup ( 𝑤 , ℝ* , < ) ∈ ℝ ) |
| 136 |
135
|
adantrl |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ 𝑣 ) ) → sup ( 𝑤 , ℝ* , < ) ∈ ℝ ) |
| 137 |
136
|
3adant3 |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ 𝑣 ) ∧ ( 𝑧 ∈ 𝑤 ∧ sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) ) → sup ( 𝑤 , ℝ* , < ) ∈ ℝ ) |
| 138 |
|
simp2l |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ 𝑣 ) ∧ ( 𝑧 ∈ 𝑤 ∧ sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) ) → 𝑥 ∈ ℝ ) |
| 139 |
132 18
|
sstrdi |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ 𝑣 ) ∧ ( 𝑧 ∈ 𝑤 ∧ sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) ) → 𝑤 ⊆ ℝ* ) |
| 140 |
|
supxrub |
⊢ ( ( 𝑤 ⊆ ℝ* ∧ 𝑧 ∈ 𝑤 ) → 𝑧 ≤ sup ( 𝑤 , ℝ* , < ) ) |
| 141 |
139 133 140
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ 𝑣 ) ∧ ( 𝑧 ∈ 𝑤 ∧ sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) ) → 𝑧 ≤ sup ( 𝑤 , ℝ* , < ) ) |
| 142 |
|
simp3r |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ 𝑣 ) ∧ ( 𝑧 ∈ 𝑤 ∧ sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) ) → sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) |
| 143 |
134 137 138 141 142
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ 𝑣 ) ∧ ( 𝑧 ∈ 𝑤 ∧ sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) ) → 𝑧 ≤ 𝑥 ) |
| 144 |
143
|
3expia |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ 𝑣 ) ) → ( ( 𝑧 ∈ 𝑤 ∧ sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) → 𝑧 ≤ 𝑥 ) ) |
| 145 |
144
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑤 ∈ 𝑣 ) → ( ( 𝑧 ∈ 𝑤 ∧ sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) → 𝑧 ≤ 𝑥 ) ) |
| 146 |
145
|
rexlimdva |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑤 ∈ 𝑣 ( 𝑧 ∈ 𝑤 ∧ sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) → 𝑧 ≤ 𝑥 ) ) |
| 147 |
146
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ∧ ran 𝐹 ⊆ ∪ 𝑣 ) ) ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑤 ∈ 𝑣 ( 𝑧 ∈ 𝑤 ∧ sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) → 𝑧 ≤ 𝑥 ) ) |
| 148 |
125 147
|
syl5 |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ∧ ran 𝐹 ⊆ ∪ 𝑣 ) ) ∧ 𝑥 ∈ ℝ ) → ( ( ∃ 𝑤 ∈ 𝑣 𝑧 ∈ 𝑤 ∧ ∀ 𝑤 ∈ 𝑣 sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) → 𝑧 ≤ 𝑥 ) ) |
| 149 |
148
|
expdimp |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ∧ ran 𝐹 ⊆ ∪ 𝑣 ) ) ∧ 𝑥 ∈ ℝ ) ∧ ∃ 𝑤 ∈ 𝑣 𝑧 ∈ 𝑤 ) → ( ∀ 𝑤 ∈ 𝑣 sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 → 𝑧 ≤ 𝑥 ) ) |
| 150 |
124 149
|
sylan2b |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ∧ ran 𝐹 ⊆ ∪ 𝑣 ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑧 ∈ ∪ 𝑣 ) → ( ∀ 𝑤 ∈ 𝑣 sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 → 𝑧 ≤ 𝑥 ) ) |
| 151 |
123 150
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ∧ ran 𝐹 ⊆ ∪ 𝑣 ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑧 ∈ ran 𝐹 ) → ( ∀ 𝑤 ∈ 𝑣 sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 → 𝑧 ≤ 𝑥 ) ) |
| 152 |
151
|
ralrimdva |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ∧ ran 𝐹 ⊆ ∪ 𝑣 ) ) ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑤 ∈ 𝑣 sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 → ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑥 ) ) |
| 153 |
9
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝑋 ) |
| 154 |
153
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ∧ ran 𝐹 ⊆ ∪ 𝑣 ) ) ∧ 𝑥 ∈ ℝ ) → 𝐹 Fn 𝑋 ) |
| 155 |
|
breq1 |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑦 ) → ( 𝑧 ≤ 𝑥 ↔ ( 𝐹 ‘ 𝑦 ) ≤ 𝑥 ) ) |
| 156 |
155
|
ralrn |
⊢ ( 𝐹 Fn 𝑋 → ( ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑥 ↔ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ 𝑥 ) ) |
| 157 |
154 156
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ∧ ran 𝐹 ⊆ ∪ 𝑣 ) ) ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑥 ↔ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ 𝑥 ) ) |
| 158 |
152 157
|
sylibd |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ∧ ran 𝐹 ⊆ ∪ 𝑣 ) ) ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑤 ∈ 𝑣 sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 → ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ 𝑥 ) ) |
| 159 |
158
|
reximdva |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ∧ ran 𝐹 ⊆ ∪ 𝑣 ) ) → ( ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑣 sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ 𝑥 ) ) |
| 160 |
121 159
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ∧ ran 𝐹 ⊆ ∪ 𝑣 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ 𝑥 ) |
| 161 |
68 160
|
rexlimddv |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ 𝑥 ) |