| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1000.1 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 2 |
|
bnj1000.2 |
⊢ ( 𝜓″ ↔ [ 𝐺 / 𝑓 ] 𝜓 ) |
| 3 |
|
bnj1000.3 |
⊢ 𝐺 ∈ V |
| 4 |
|
bnj1000.15 |
⊢ 𝐶 = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑚 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
| 5 |
|
bnj1000.16 |
⊢ 𝐺 = ( 𝑓 ∪ { 〈 𝑛 , 𝐶 〉 } ) |
| 6 |
|
df-ral |
⊢ ( ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ∀ 𝑖 ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
| 7 |
6
|
bicomi |
⊢ ( ∀ 𝑖 ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 8 |
7
|
sbcbii |
⊢ ( [ 𝐺 / 𝑓 ] ∀ 𝑖 ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ [ 𝐺 / 𝑓 ] ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 9 |
|
nfv |
⊢ Ⅎ 𝑓 𝑖 ∈ ω |
| 10 |
9
|
sbc19.21g |
⊢ ( 𝐺 ∈ V → ( [ 𝐺 / 𝑓 ] ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ( 𝑖 ∈ ω → [ 𝐺 / 𝑓 ] ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) ) |
| 11 |
3 10
|
ax-mp |
⊢ ( [ 𝐺 / 𝑓 ] ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ( 𝑖 ∈ ω → [ 𝐺 / 𝑓 ] ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
| 12 |
|
nfv |
⊢ Ⅎ 𝑓 suc 𝑖 ∈ 𝑁 |
| 13 |
12
|
sbc19.21g |
⊢ ( 𝐺 ∈ V → ( [ 𝐺 / 𝑓 ] ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( suc 𝑖 ∈ 𝑁 → [ 𝐺 / 𝑓 ] ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
| 14 |
3 13
|
ax-mp |
⊢ ( [ 𝐺 / 𝑓 ] ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( suc 𝑖 ∈ 𝑁 → [ 𝐺 / 𝑓 ] ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 15 |
|
fveq1 |
⊢ ( 𝑓 = 𝐺 → ( 𝑓 ‘ suc 𝑖 ) = ( 𝐺 ‘ suc 𝑖 ) ) |
| 16 |
|
fveq1 |
⊢ ( 𝑓 = 𝐺 → ( 𝑓 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑖 ) ) |
| 17 |
|
ax-5 |
⊢ ( 𝑤 ∈ ( 𝑓 ‘ 𝑖 ) → ∀ 𝑦 𝑤 ∈ ( 𝑓 ‘ 𝑖 ) ) |
| 18 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑓 |
| 19 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑛 |
| 20 |
|
nfiu1 |
⊢ Ⅎ 𝑦 ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑚 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
| 21 |
4 20
|
nfcxfr |
⊢ Ⅎ 𝑦 𝐶 |
| 22 |
19 21
|
nfop |
⊢ Ⅎ 𝑦 〈 𝑛 , 𝐶 〉 |
| 23 |
22
|
nfsn |
⊢ Ⅎ 𝑦 { 〈 𝑛 , 𝐶 〉 } |
| 24 |
18 23
|
nfun |
⊢ Ⅎ 𝑦 ( 𝑓 ∪ { 〈 𝑛 , 𝐶 〉 } ) |
| 25 |
5 24
|
nfcxfr |
⊢ Ⅎ 𝑦 𝐺 |
| 26 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑖 |
| 27 |
25 26
|
nffv |
⊢ Ⅎ 𝑦 ( 𝐺 ‘ 𝑖 ) |
| 28 |
27
|
nfcrii |
⊢ ( 𝑤 ∈ ( 𝐺 ‘ 𝑖 ) → ∀ 𝑦 𝑤 ∈ ( 𝐺 ‘ 𝑖 ) ) |
| 29 |
17 28
|
bnj1316 |
⊢ ( ( 𝑓 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑖 ) → ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 30 |
16 29
|
syl |
⊢ ( 𝑓 = 𝐺 → ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 31 |
15 30
|
eqeq12d |
⊢ ( 𝑓 = 𝐺 → ( ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ↔ ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 32 |
|
fveq1 |
⊢ ( 𝑓 = 𝑒 → ( 𝑓 ‘ suc 𝑖 ) = ( 𝑒 ‘ suc 𝑖 ) ) |
| 33 |
|
fveq1 |
⊢ ( 𝑓 = 𝑒 → ( 𝑓 ‘ 𝑖 ) = ( 𝑒 ‘ 𝑖 ) ) |
| 34 |
|
ax-5 |
⊢ ( ( 𝑓 ‘ 𝑖 ) = ( 𝑒 ‘ 𝑖 ) → ∀ 𝑦 ( 𝑓 ‘ 𝑖 ) = ( 𝑒 ‘ 𝑖 ) ) |
| 35 |
34
|
bnj956 |
⊢ ( ( 𝑓 ‘ 𝑖 ) = ( 𝑒 ‘ 𝑖 ) → ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = ∪ 𝑦 ∈ ( 𝑒 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 36 |
33 35
|
syl |
⊢ ( 𝑓 = 𝑒 → ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = ∪ 𝑦 ∈ ( 𝑒 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 37 |
32 36
|
eqeq12d |
⊢ ( 𝑓 = 𝑒 → ( ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ↔ ( 𝑒 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑒 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 38 |
|
fveq1 |
⊢ ( 𝑒 = 𝐺 → ( 𝑒 ‘ suc 𝑖 ) = ( 𝐺 ‘ suc 𝑖 ) ) |
| 39 |
|
fveq1 |
⊢ ( 𝑒 = 𝐺 → ( 𝑒 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑖 ) ) |
| 40 |
|
ax-5 |
⊢ ( 𝑤 ∈ ( 𝑒 ‘ 𝑖 ) → ∀ 𝑦 𝑤 ∈ ( 𝑒 ‘ 𝑖 ) ) |
| 41 |
40 28
|
bnj1316 |
⊢ ( ( 𝑒 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑖 ) → ∪ 𝑦 ∈ ( 𝑒 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 42 |
39 41
|
syl |
⊢ ( 𝑒 = 𝐺 → ∪ 𝑦 ∈ ( 𝑒 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 43 |
38 42
|
eqeq12d |
⊢ ( 𝑒 = 𝐺 → ( ( 𝑒 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑒 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ↔ ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 44 |
3 31 37 43
|
bnj610 |
⊢ ( [ 𝐺 / 𝑓 ] ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ↔ ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 45 |
44
|
imbi2i |
⊢ ( ( suc 𝑖 ∈ 𝑁 → [ 𝐺 / 𝑓 ] ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( suc 𝑖 ∈ 𝑁 → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 46 |
14 45
|
bitri |
⊢ ( [ 𝐺 / 𝑓 ] ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( suc 𝑖 ∈ 𝑁 → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 47 |
46
|
imbi2i |
⊢ ( ( 𝑖 ∈ ω → [ 𝐺 / 𝑓 ] ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
| 48 |
11 47
|
bitri |
⊢ ( [ 𝐺 / 𝑓 ] ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
| 49 |
48
|
albii |
⊢ ( ∀ 𝑖 [ 𝐺 / 𝑓 ] ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ∀ 𝑖 ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
| 50 |
|
sbcal |
⊢ ( [ 𝐺 / 𝑓 ] ∀ 𝑖 ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ∀ 𝑖 [ 𝐺 / 𝑓 ] ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
| 51 |
|
df-ral |
⊢ ( ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑁 → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ∀ 𝑖 ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
| 52 |
49 50 51
|
3bitr4ri |
⊢ ( ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑁 → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ [ 𝐺 / 𝑓 ] ∀ 𝑖 ( 𝑖 ∈ ω → ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
| 53 |
1
|
sbcbii |
⊢ ( [ 𝐺 / 𝑓 ] 𝜓 ↔ [ 𝐺 / 𝑓 ] ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑁 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 54 |
8 52 53
|
3bitr4ri |
⊢ ( [ 𝐺 / 𝑓 ] 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑁 → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 55 |
2 54
|
bitri |
⊢ ( 𝜓″ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑁 → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |