Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1001.3 |
⊢ ( 𝜒 ↔ ( 𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
2 |
|
bnj1001.5 |
⊢ ( 𝜏 ↔ ( 𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ) |
3 |
|
bnj1001.6 |
⊢ ( 𝜂 ↔ ( 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
4 |
|
bnj1001.13 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
5 |
|
bnj1001.27 |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) → 𝜒″ ) |
6 |
3
|
simplbi |
⊢ ( 𝜂 → 𝑖 ∈ 𝑛 ) |
7 |
6
|
bnj708 |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) → 𝑖 ∈ 𝑛 ) |
8 |
1
|
bnj1232 |
⊢ ( 𝜒 → 𝑛 ∈ 𝐷 ) |
9 |
8
|
bnj706 |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) → 𝑛 ∈ 𝐷 ) |
10 |
4
|
bnj923 |
⊢ ( 𝑛 ∈ 𝐷 → 𝑛 ∈ ω ) |
11 |
9 10
|
syl |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) → 𝑛 ∈ ω ) |
12 |
|
elnn |
⊢ ( ( 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ ω ) → 𝑖 ∈ ω ) |
13 |
7 11 12
|
syl2anc |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) → 𝑖 ∈ ω ) |
14 |
2
|
simp3bi |
⊢ ( 𝜏 → 𝑝 = suc 𝑛 ) |
15 |
14
|
bnj707 |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) → 𝑝 = suc 𝑛 ) |
16 |
|
nnord |
⊢ ( 𝑛 ∈ ω → Ord 𝑛 ) |
17 |
|
ordsucelsuc |
⊢ ( Ord 𝑛 → ( 𝑖 ∈ 𝑛 ↔ suc 𝑖 ∈ suc 𝑛 ) ) |
18 |
10 16 17
|
3syl |
⊢ ( 𝑛 ∈ 𝐷 → ( 𝑖 ∈ 𝑛 ↔ suc 𝑖 ∈ suc 𝑛 ) ) |
19 |
18
|
biimpa |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛 ) → suc 𝑖 ∈ suc 𝑛 ) |
20 |
|
eleq2 |
⊢ ( 𝑝 = suc 𝑛 → ( suc 𝑖 ∈ 𝑝 ↔ suc 𝑖 ∈ suc 𝑛 ) ) |
21 |
19 20
|
anim12i |
⊢ ( ( ( 𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛 ) ∧ 𝑝 = suc 𝑛 ) → ( suc 𝑖 ∈ suc 𝑛 ∧ ( suc 𝑖 ∈ 𝑝 ↔ suc 𝑖 ∈ suc 𝑛 ) ) ) |
22 |
9 7 15 21
|
syl21anc |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) → ( suc 𝑖 ∈ suc 𝑛 ∧ ( suc 𝑖 ∈ 𝑝 ↔ suc 𝑖 ∈ suc 𝑛 ) ) ) |
23 |
|
bianir |
⊢ ( ( suc 𝑖 ∈ suc 𝑛 ∧ ( suc 𝑖 ∈ 𝑝 ↔ suc 𝑖 ∈ suc 𝑛 ) ) → suc 𝑖 ∈ 𝑝 ) |
24 |
22 23
|
syl |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) → suc 𝑖 ∈ 𝑝 ) |
25 |
5 13 24
|
3jca |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) → ( 𝜒″ ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ) ) |