| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1001.3 | 
							⊢ ( 𝜒  ↔  ( 𝑛  ∈  𝐷  ∧  𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bnj1001.5 | 
							⊢ ( 𝜏  ↔  ( 𝑚  ∈  ω  ∧  𝑛  =  suc  𝑚  ∧  𝑝  =  suc  𝑛 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							bnj1001.6 | 
							⊢ ( 𝜂  ↔  ( 𝑖  ∈  𝑛  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑖 ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							bnj1001.13 | 
							⊢ 𝐷  =  ( ω  ∖  { ∅ } )  | 
						
						
							| 5 | 
							
								
							 | 
							bnj1001.27 | 
							⊢ ( ( 𝜃  ∧  𝜒  ∧  𝜏  ∧  𝜂 )  →  𝜒″ )  | 
						
						
							| 6 | 
							
								3
							 | 
							simplbi | 
							⊢ ( 𝜂  →  𝑖  ∈  𝑛 )  | 
						
						
							| 7 | 
							
								6
							 | 
							bnj708 | 
							⊢ ( ( 𝜃  ∧  𝜒  ∧  𝜏  ∧  𝜂 )  →  𝑖  ∈  𝑛 )  | 
						
						
							| 8 | 
							
								1
							 | 
							bnj1232 | 
							⊢ ( 𝜒  →  𝑛  ∈  𝐷 )  | 
						
						
							| 9 | 
							
								8
							 | 
							bnj706 | 
							⊢ ( ( 𝜃  ∧  𝜒  ∧  𝜏  ∧  𝜂 )  →  𝑛  ∈  𝐷 )  | 
						
						
							| 10 | 
							
								4
							 | 
							bnj923 | 
							⊢ ( 𝑛  ∈  𝐷  →  𝑛  ∈  ω )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							syl | 
							⊢ ( ( 𝜃  ∧  𝜒  ∧  𝜏  ∧  𝜂 )  →  𝑛  ∈  ω )  | 
						
						
							| 12 | 
							
								
							 | 
							elnn | 
							⊢ ( ( 𝑖  ∈  𝑛  ∧  𝑛  ∈  ω )  →  𝑖  ∈  ω )  | 
						
						
							| 13 | 
							
								7 11 12
							 | 
							syl2anc | 
							⊢ ( ( 𝜃  ∧  𝜒  ∧  𝜏  ∧  𝜂 )  →  𝑖  ∈  ω )  | 
						
						
							| 14 | 
							
								2
							 | 
							simp3bi | 
							⊢ ( 𝜏  →  𝑝  =  suc  𝑛 )  | 
						
						
							| 15 | 
							
								14
							 | 
							bnj707 | 
							⊢ ( ( 𝜃  ∧  𝜒  ∧  𝜏  ∧  𝜂 )  →  𝑝  =  suc  𝑛 )  | 
						
						
							| 16 | 
							
								
							 | 
							nnord | 
							⊢ ( 𝑛  ∈  ω  →  Ord  𝑛 )  | 
						
						
							| 17 | 
							
								
							 | 
							ordsucelsuc | 
							⊢ ( Ord  𝑛  →  ( 𝑖  ∈  𝑛  ↔  suc  𝑖  ∈  suc  𝑛 ) )  | 
						
						
							| 18 | 
							
								10 16 17
							 | 
							3syl | 
							⊢ ( 𝑛  ∈  𝐷  →  ( 𝑖  ∈  𝑛  ↔  suc  𝑖  ∈  suc  𝑛 ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							biimpa | 
							⊢ ( ( 𝑛  ∈  𝐷  ∧  𝑖  ∈  𝑛 )  →  suc  𝑖  ∈  suc  𝑛 )  | 
						
						
							| 20 | 
							
								
							 | 
							eleq2 | 
							⊢ ( 𝑝  =  suc  𝑛  →  ( suc  𝑖  ∈  𝑝  ↔  suc  𝑖  ∈  suc  𝑛 ) )  | 
						
						
							| 21 | 
							
								19 20
							 | 
							anim12i | 
							⊢ ( ( ( 𝑛  ∈  𝐷  ∧  𝑖  ∈  𝑛 )  ∧  𝑝  =  suc  𝑛 )  →  ( suc  𝑖  ∈  suc  𝑛  ∧  ( suc  𝑖  ∈  𝑝  ↔  suc  𝑖  ∈  suc  𝑛 ) ) )  | 
						
						
							| 22 | 
							
								9 7 15 21
							 | 
							syl21anc | 
							⊢ ( ( 𝜃  ∧  𝜒  ∧  𝜏  ∧  𝜂 )  →  ( suc  𝑖  ∈  suc  𝑛  ∧  ( suc  𝑖  ∈  𝑝  ↔  suc  𝑖  ∈  suc  𝑛 ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							bianir | 
							⊢ ( ( suc  𝑖  ∈  suc  𝑛  ∧  ( suc  𝑖  ∈  𝑝  ↔  suc  𝑖  ∈  suc  𝑛 ) )  →  suc  𝑖  ∈  𝑝 )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							syl | 
							⊢ ( ( 𝜃  ∧  𝜒  ∧  𝜏  ∧  𝜂 )  →  suc  𝑖  ∈  𝑝 )  | 
						
						
							| 25 | 
							
								5 13 24
							 | 
							3jca | 
							⊢ ( ( 𝜃  ∧  𝜒  ∧  𝜏  ∧  𝜂 )  →  ( 𝜒″  ∧  𝑖  ∈  ω  ∧  suc  𝑖  ∈  𝑝 ) )  |