Metamath Proof Explorer


Theorem bnj1006

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1006.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
bnj1006.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
bnj1006.3 ( 𝜒 ↔ ( 𝑛𝐷𝑓 Fn 𝑛𝜑𝜓 ) )
bnj1006.4 ( 𝜃 ↔ ( 𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
bnj1006.5 ( 𝜏 ↔ ( 𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛 ) )
bnj1006.6 ( 𝜂 ↔ ( 𝑖𝑛𝑦 ∈ ( 𝑓𝑖 ) ) )
bnj1006.7 ( 𝜑′[ 𝑝 / 𝑛 ] 𝜑 )
bnj1006.8 ( 𝜓′[ 𝑝 / 𝑛 ] 𝜓 )
bnj1006.9 ( 𝜒′[ 𝑝 / 𝑛 ] 𝜒 )
bnj1006.10 ( 𝜑″[ 𝐺 / 𝑓 ] 𝜑′ )
bnj1006.11 ( 𝜓″[ 𝐺 / 𝑓 ] 𝜓′ )
bnj1006.12 ( 𝜒″[ 𝐺 / 𝑓 ] 𝜒′ )
bnj1006.13 𝐷 = ( ω ∖ { ∅ } )
bnj1006.15 𝐶 = 𝑦 ∈ ( 𝑓𝑚 ) pred ( 𝑦 , 𝐴 , 𝑅 )
bnj1006.16 𝐺 = ( 𝑓 ∪ { ⟨ 𝑛 , 𝐶 ⟩ } )
bnj1006.28 ( ( 𝜃𝜒𝜏𝜂 ) → ( 𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝 ) )
Assertion bnj1006 ( ( 𝜃𝜒𝜏𝜂 ) → pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ ( 𝐺 ‘ suc 𝑖 ) )

Proof

Step Hyp Ref Expression
1 bnj1006.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
2 bnj1006.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
3 bnj1006.3 ( 𝜒 ↔ ( 𝑛𝐷𝑓 Fn 𝑛𝜑𝜓 ) )
4 bnj1006.4 ( 𝜃 ↔ ( 𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
5 bnj1006.5 ( 𝜏 ↔ ( 𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛 ) )
6 bnj1006.6 ( 𝜂 ↔ ( 𝑖𝑛𝑦 ∈ ( 𝑓𝑖 ) ) )
7 bnj1006.7 ( 𝜑′[ 𝑝 / 𝑛 ] 𝜑 )
8 bnj1006.8 ( 𝜓′[ 𝑝 / 𝑛 ] 𝜓 )
9 bnj1006.9 ( 𝜒′[ 𝑝 / 𝑛 ] 𝜒 )
10 bnj1006.10 ( 𝜑″[ 𝐺 / 𝑓 ] 𝜑′ )
11 bnj1006.11 ( 𝜓″[ 𝐺 / 𝑓 ] 𝜓′ )
12 bnj1006.12 ( 𝜒″[ 𝐺 / 𝑓 ] 𝜒′ )
13 bnj1006.13 𝐷 = ( ω ∖ { ∅ } )
14 bnj1006.15 𝐶 = 𝑦 ∈ ( 𝑓𝑚 ) pred ( 𝑦 , 𝐴 , 𝑅 )
15 bnj1006.16 𝐺 = ( 𝑓 ∪ { ⟨ 𝑛 , 𝐶 ⟩ } )
16 bnj1006.28 ( ( 𝜃𝜒𝜏𝜂 ) → ( 𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝 ) )
17 6 simprbi ( 𝜂𝑦 ∈ ( 𝑓𝑖 ) )
18 17 bnj708 ( ( 𝜃𝜒𝜏𝜂 ) → 𝑦 ∈ ( 𝑓𝑖 ) )
19 bnj253 ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
20 19 simp1bi ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) → ( 𝑅 FrSe 𝐴𝑋𝐴 ) )
21 4 20 sylbi ( 𝜃 → ( 𝑅 FrSe 𝐴𝑋𝐴 ) )
22 21 bnj705 ( ( 𝜃𝜒𝜏𝜂 ) → ( 𝑅 FrSe 𝐴𝑋𝐴 ) )
23 bnj643 ( ( 𝜃𝜒𝜏𝜂 ) → 𝜒 )
24 3simpc ( ( 𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛 ) → ( 𝑛 = suc 𝑚𝑝 = suc 𝑛 ) )
25 5 24 sylbi ( 𝜏 → ( 𝑛 = suc 𝑚𝑝 = suc 𝑛 ) )
26 25 bnj707 ( ( 𝜃𝜒𝜏𝜂 ) → ( 𝑛 = suc 𝑚𝑝 = suc 𝑛 ) )
27 3anass ( ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ↔ ( 𝜒 ∧ ( 𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ) )
28 23 26 27 sylanbrc ( ( 𝜃𝜒𝜏𝜂 ) → ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) )
29 biid ( ( 𝑓 Fn 𝑛𝜑𝜓 ) ↔ ( 𝑓 Fn 𝑛𝜑𝜓 ) )
30 biid ( ( 𝑛𝐷𝑝 = suc 𝑛𝑚𝑛 ) ↔ ( 𝑛𝐷𝑝 = suc 𝑛𝑚𝑛 ) )
31 1 2 3 13 14 29 30 bnj969 ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ) → 𝐶 ∈ V )
32 22 28 31 syl2anc ( ( 𝜃𝜒𝜏𝜂 ) → 𝐶 ∈ V )
33 3 bnj1235 ( 𝜒𝑓 Fn 𝑛 )
34 33 bnj706 ( ( 𝜃𝜒𝜏𝜂 ) → 𝑓 Fn 𝑛 )
35 5 simp3bi ( 𝜏𝑝 = suc 𝑛 )
36 35 bnj707 ( ( 𝜃𝜒𝜏𝜂 ) → 𝑝 = suc 𝑛 )
37 6 simplbi ( 𝜂𝑖𝑛 )
38 37 bnj708 ( ( 𝜃𝜒𝜏𝜂 ) → 𝑖𝑛 )
39 32 34 36 38 bnj951 ( ( 𝜃𝜒𝜏𝜂 ) → ( 𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑖𝑛 ) )
40 15 bnj945 ( ( 𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑖𝑛 ) → ( 𝐺𝑖 ) = ( 𝑓𝑖 ) )
41 39 40 syl ( ( 𝜃𝜒𝜏𝜂 ) → ( 𝐺𝑖 ) = ( 𝑓𝑖 ) )
42 18 41 eleqtrrd ( ( 𝜃𝜒𝜏𝜂 ) → 𝑦 ∈ ( 𝐺𝑖 ) )
43 16 anim1i ( ( ( 𝜃𝜒𝜏𝜂 ) ∧ 𝑦 ∈ ( 𝐺𝑖 ) ) → ( ( 𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝 ) ∧ 𝑦 ∈ ( 𝐺𝑖 ) ) )
44 df-bnj17 ( ( 𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝𝑦 ∈ ( 𝐺𝑖 ) ) ↔ ( ( 𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝 ) ∧ 𝑦 ∈ ( 𝐺𝑖 ) ) )
45 43 44 sylibr ( ( ( 𝜃𝜒𝜏𝜂 ) ∧ 𝑦 ∈ ( 𝐺𝑖 ) ) → ( 𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝𝑦 ∈ ( 𝐺𝑖 ) ) )
46 1 2 3 7 8 9 10 11 12 14 15 bnj999 ( ( 𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝𝑦 ∈ ( 𝐺𝑖 ) ) → pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ ( 𝐺 ‘ suc 𝑖 ) )
47 45 46 syl ( ( ( 𝜃𝜒𝜏𝜂 ) ∧ 𝑦 ∈ ( 𝐺𝑖 ) ) → pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ ( 𝐺 ‘ suc 𝑖 ) )
48 42 47 mpdan ( ( 𝜃𝜒𝜏𝜂 ) → pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ ( 𝐺 ‘ suc 𝑖 ) )