| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1006.1 | 
							⊢ ( 𝜑  ↔  ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bnj1006.2 | 
							⊢ ( 𝜓  ↔  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							bnj1006.3 | 
							⊢ ( 𝜒  ↔  ( 𝑛  ∈  𝐷  ∧  𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							bnj1006.4 | 
							⊢ ( 𝜃  ↔  ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴  ∧  𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							bnj1006.5 | 
							⊢ ( 𝜏  ↔  ( 𝑚  ∈  ω  ∧  𝑛  =  suc  𝑚  ∧  𝑝  =  suc  𝑛 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							bnj1006.6 | 
							⊢ ( 𝜂  ↔  ( 𝑖  ∈  𝑛  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑖 ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							bnj1006.7 | 
							⊢ ( 𝜑′  ↔  [ 𝑝  /  𝑛 ] 𝜑 )  | 
						
						
							| 8 | 
							
								
							 | 
							bnj1006.8 | 
							⊢ ( 𝜓′  ↔  [ 𝑝  /  𝑛 ] 𝜓 )  | 
						
						
							| 9 | 
							
								
							 | 
							bnj1006.9 | 
							⊢ ( 𝜒′  ↔  [ 𝑝  /  𝑛 ] 𝜒 )  | 
						
						
							| 10 | 
							
								
							 | 
							bnj1006.10 | 
							⊢ ( 𝜑″  ↔  [ 𝐺  /  𝑓 ] 𝜑′ )  | 
						
						
							| 11 | 
							
								
							 | 
							bnj1006.11 | 
							⊢ ( 𝜓″  ↔  [ 𝐺  /  𝑓 ] 𝜓′ )  | 
						
						
							| 12 | 
							
								
							 | 
							bnj1006.12 | 
							⊢ ( 𝜒″  ↔  [ 𝐺  /  𝑓 ] 𝜒′ )  | 
						
						
							| 13 | 
							
								
							 | 
							bnj1006.13 | 
							⊢ 𝐷  =  ( ω  ∖  { ∅ } )  | 
						
						
							| 14 | 
							
								
							 | 
							bnj1006.15 | 
							⊢ 𝐶  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑚 )  pred ( 𝑦 ,  𝐴 ,  𝑅 )  | 
						
						
							| 15 | 
							
								
							 | 
							bnj1006.16 | 
							⊢ 𝐺  =  ( 𝑓  ∪  { 〈 𝑛 ,  𝐶 〉 } )  | 
						
						
							| 16 | 
							
								
							 | 
							bnj1006.28 | 
							⊢ ( ( 𝜃  ∧  𝜒  ∧  𝜏  ∧  𝜂 )  →  ( 𝜒″  ∧  𝑖  ∈  ω  ∧  suc  𝑖  ∈  𝑝 ) )  | 
						
						
							| 17 | 
							
								6
							 | 
							simprbi | 
							⊢ ( 𝜂  →  𝑦  ∈  ( 𝑓 ‘ 𝑖 ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							bnj708 | 
							⊢ ( ( 𝜃  ∧  𝜒  ∧  𝜏  ∧  𝜂 )  →  𝑦  ∈  ( 𝑓 ‘ 𝑖 ) )  | 
						
						
							| 19 | 
							
								
							 | 
							bnj253 | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴  ∧  𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  ↔  ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 )  ∧  𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							simp1bi | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴  ∧  𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  →  ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 ) )  | 
						
						
							| 21 | 
							
								4 20
							 | 
							sylbi | 
							⊢ ( 𝜃  →  ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							bnj705 | 
							⊢ ( ( 𝜃  ∧  𝜒  ∧  𝜏  ∧  𝜂 )  →  ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							bnj643 | 
							⊢ ( ( 𝜃  ∧  𝜒  ∧  𝜏  ∧  𝜂 )  →  𝜒 )  | 
						
						
							| 24 | 
							
								
							 | 
							3simpc | 
							⊢ ( ( 𝑚  ∈  ω  ∧  𝑛  =  suc  𝑚  ∧  𝑝  =  suc  𝑛 )  →  ( 𝑛  =  suc  𝑚  ∧  𝑝  =  suc  𝑛 ) )  | 
						
						
							| 25 | 
							
								5 24
							 | 
							sylbi | 
							⊢ ( 𝜏  →  ( 𝑛  =  suc  𝑚  ∧  𝑝  =  suc  𝑛 ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							bnj707 | 
							⊢ ( ( 𝜃  ∧  𝜒  ∧  𝜏  ∧  𝜂 )  →  ( 𝑛  =  suc  𝑚  ∧  𝑝  =  suc  𝑛 ) )  | 
						
						
							| 27 | 
							
								
							 | 
							3anass | 
							⊢ ( ( 𝜒  ∧  𝑛  =  suc  𝑚  ∧  𝑝  =  suc  𝑛 )  ↔  ( 𝜒  ∧  ( 𝑛  =  suc  𝑚  ∧  𝑝  =  suc  𝑛 ) ) )  | 
						
						
							| 28 | 
							
								23 26 27
							 | 
							sylanbrc | 
							⊢ ( ( 𝜃  ∧  𝜒  ∧  𝜏  ∧  𝜂 )  →  ( 𝜒  ∧  𝑛  =  suc  𝑚  ∧  𝑝  =  suc  𝑛 ) )  | 
						
						
							| 29 | 
							
								
							 | 
							biid | 
							⊢ ( ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 )  ↔  ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) )  | 
						
						
							| 30 | 
							
								
							 | 
							biid | 
							⊢ ( ( 𝑛  ∈  𝐷  ∧  𝑝  =  suc  𝑛  ∧  𝑚  ∈  𝑛 )  ↔  ( 𝑛  ∈  𝐷  ∧  𝑝  =  suc  𝑛  ∧  𝑚  ∈  𝑛 ) )  | 
						
						
							| 31 | 
							
								1 2 3 13 14 29 30
							 | 
							bnj969 | 
							⊢ ( ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 )  ∧  ( 𝜒  ∧  𝑛  =  suc  𝑚  ∧  𝑝  =  suc  𝑛 ) )  →  𝐶  ∈  V )  | 
						
						
							| 32 | 
							
								22 28 31
							 | 
							syl2anc | 
							⊢ ( ( 𝜃  ∧  𝜒  ∧  𝜏  ∧  𝜂 )  →  𝐶  ∈  V )  | 
						
						
							| 33 | 
							
								3
							 | 
							bnj1235 | 
							⊢ ( 𝜒  →  𝑓  Fn  𝑛 )  | 
						
						
							| 34 | 
							
								33
							 | 
							bnj706 | 
							⊢ ( ( 𝜃  ∧  𝜒  ∧  𝜏  ∧  𝜂 )  →  𝑓  Fn  𝑛 )  | 
						
						
							| 35 | 
							
								5
							 | 
							simp3bi | 
							⊢ ( 𝜏  →  𝑝  =  suc  𝑛 )  | 
						
						
							| 36 | 
							
								35
							 | 
							bnj707 | 
							⊢ ( ( 𝜃  ∧  𝜒  ∧  𝜏  ∧  𝜂 )  →  𝑝  =  suc  𝑛 )  | 
						
						
							| 37 | 
							
								6
							 | 
							simplbi | 
							⊢ ( 𝜂  →  𝑖  ∈  𝑛 )  | 
						
						
							| 38 | 
							
								37
							 | 
							bnj708 | 
							⊢ ( ( 𝜃  ∧  𝜒  ∧  𝜏  ∧  𝜂 )  →  𝑖  ∈  𝑛 )  | 
						
						
							| 39 | 
							
								32 34 36 38
							 | 
							bnj951 | 
							⊢ ( ( 𝜃  ∧  𝜒  ∧  𝜏  ∧  𝜂 )  →  ( 𝐶  ∈  V  ∧  𝑓  Fn  𝑛  ∧  𝑝  =  suc  𝑛  ∧  𝑖  ∈  𝑛 ) )  | 
						
						
							| 40 | 
							
								15
							 | 
							bnj945 | 
							⊢ ( ( 𝐶  ∈  V  ∧  𝑓  Fn  𝑛  ∧  𝑝  =  suc  𝑛  ∧  𝑖  ∈  𝑛 )  →  ( 𝐺 ‘ 𝑖 )  =  ( 𝑓 ‘ 𝑖 ) )  | 
						
						
							| 41 | 
							
								39 40
							 | 
							syl | 
							⊢ ( ( 𝜃  ∧  𝜒  ∧  𝜏  ∧  𝜂 )  →  ( 𝐺 ‘ 𝑖 )  =  ( 𝑓 ‘ 𝑖 ) )  | 
						
						
							| 42 | 
							
								18 41
							 | 
							eleqtrrd | 
							⊢ ( ( 𝜃  ∧  𝜒  ∧  𝜏  ∧  𝜂 )  →  𝑦  ∈  ( 𝐺 ‘ 𝑖 ) )  | 
						
						
							| 43 | 
							
								16
							 | 
							anim1i | 
							⊢ ( ( ( 𝜃  ∧  𝜒  ∧  𝜏  ∧  𝜂 )  ∧  𝑦  ∈  ( 𝐺 ‘ 𝑖 ) )  →  ( ( 𝜒″  ∧  𝑖  ∈  ω  ∧  suc  𝑖  ∈  𝑝 )  ∧  𝑦  ∈  ( 𝐺 ‘ 𝑖 ) ) )  | 
						
						
							| 44 | 
							
								
							 | 
							df-bnj17 | 
							⊢ ( ( 𝜒″  ∧  𝑖  ∈  ω  ∧  suc  𝑖  ∈  𝑝  ∧  𝑦  ∈  ( 𝐺 ‘ 𝑖 ) )  ↔  ( ( 𝜒″  ∧  𝑖  ∈  ω  ∧  suc  𝑖  ∈  𝑝 )  ∧  𝑦  ∈  ( 𝐺 ‘ 𝑖 ) ) )  | 
						
						
							| 45 | 
							
								43 44
							 | 
							sylibr | 
							⊢ ( ( ( 𝜃  ∧  𝜒  ∧  𝜏  ∧  𝜂 )  ∧  𝑦  ∈  ( 𝐺 ‘ 𝑖 ) )  →  ( 𝜒″  ∧  𝑖  ∈  ω  ∧  suc  𝑖  ∈  𝑝  ∧  𝑦  ∈  ( 𝐺 ‘ 𝑖 ) ) )  | 
						
						
							| 46 | 
							
								1 2 3 7 8 9 10 11 12 14 15
							 | 
							bnj999 | 
							⊢ ( ( 𝜒″  ∧  𝑖  ∈  ω  ∧  suc  𝑖  ∈  𝑝  ∧  𝑦  ∈  ( 𝐺 ‘ 𝑖 ) )  →   pred ( 𝑦 ,  𝐴 ,  𝑅 )  ⊆  ( 𝐺 ‘ suc  𝑖 ) )  | 
						
						
							| 47 | 
							
								45 46
							 | 
							syl | 
							⊢ ( ( ( 𝜃  ∧  𝜒  ∧  𝜏  ∧  𝜂 )  ∧  𝑦  ∈  ( 𝐺 ‘ 𝑖 ) )  →   pred ( 𝑦 ,  𝐴 ,  𝑅 )  ⊆  ( 𝐺 ‘ suc  𝑖 ) )  | 
						
						
							| 48 | 
							
								42 47
							 | 
							mpdan | 
							⊢ ( ( 𝜃  ∧  𝜒  ∧  𝜏  ∧  𝜂 )  →   pred ( 𝑦 ,  𝐴 ,  𝑅 )  ⊆  ( 𝐺 ‘ suc  𝑖 ) )  |