Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1006.1 |
⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
2 |
|
bnj1006.2 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
3 |
|
bnj1006.3 |
⊢ ( 𝜒 ↔ ( 𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
4 |
|
bnj1006.4 |
⊢ ( 𝜃 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
5 |
|
bnj1006.5 |
⊢ ( 𝜏 ↔ ( 𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ) |
6 |
|
bnj1006.6 |
⊢ ( 𝜂 ↔ ( 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
7 |
|
bnj1006.7 |
⊢ ( 𝜑′ ↔ [ 𝑝 / 𝑛 ] 𝜑 ) |
8 |
|
bnj1006.8 |
⊢ ( 𝜓′ ↔ [ 𝑝 / 𝑛 ] 𝜓 ) |
9 |
|
bnj1006.9 |
⊢ ( 𝜒′ ↔ [ 𝑝 / 𝑛 ] 𝜒 ) |
10 |
|
bnj1006.10 |
⊢ ( 𝜑″ ↔ [ 𝐺 / 𝑓 ] 𝜑′ ) |
11 |
|
bnj1006.11 |
⊢ ( 𝜓″ ↔ [ 𝐺 / 𝑓 ] 𝜓′ ) |
12 |
|
bnj1006.12 |
⊢ ( 𝜒″ ↔ [ 𝐺 / 𝑓 ] 𝜒′ ) |
13 |
|
bnj1006.13 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
14 |
|
bnj1006.15 |
⊢ 𝐶 = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑚 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
15 |
|
bnj1006.16 |
⊢ 𝐺 = ( 𝑓 ∪ { 〈 𝑛 , 𝐶 〉 } ) |
16 |
|
bnj1006.28 |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) → ( 𝜒″ ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ) ) |
17 |
6
|
simprbi |
⊢ ( 𝜂 → 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) |
18 |
17
|
bnj708 |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) → 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) |
19 |
|
bnj253 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
20 |
19
|
simp1bi |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) → ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) |
21 |
4 20
|
sylbi |
⊢ ( 𝜃 → ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) |
22 |
21
|
bnj705 |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) → ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) |
23 |
|
bnj643 |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) → 𝜒 ) |
24 |
|
3simpc |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) → ( 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ) |
25 |
5 24
|
sylbi |
⊢ ( 𝜏 → ( 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ) |
26 |
25
|
bnj707 |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) → ( 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ) |
27 |
|
3anass |
⊢ ( ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ↔ ( 𝜒 ∧ ( 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ) ) |
28 |
23 26 27
|
sylanbrc |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) → ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ) |
29 |
|
biid |
⊢ ( ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ↔ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
30 |
|
biid |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑚 ∈ 𝑛 ) ↔ ( 𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑚 ∈ 𝑛 ) ) |
31 |
1 2 3 13 14 29 30
|
bnj969 |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ) → 𝐶 ∈ V ) |
32 |
22 28 31
|
syl2anc |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) → 𝐶 ∈ V ) |
33 |
3
|
bnj1235 |
⊢ ( 𝜒 → 𝑓 Fn 𝑛 ) |
34 |
33
|
bnj706 |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) → 𝑓 Fn 𝑛 ) |
35 |
5
|
simp3bi |
⊢ ( 𝜏 → 𝑝 = suc 𝑛 ) |
36 |
35
|
bnj707 |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) → 𝑝 = suc 𝑛 ) |
37 |
6
|
simplbi |
⊢ ( 𝜂 → 𝑖 ∈ 𝑛 ) |
38 |
37
|
bnj708 |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) → 𝑖 ∈ 𝑛 ) |
39 |
32 34 36 38
|
bnj951 |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) → ( 𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛 ∧ 𝑖 ∈ 𝑛 ) ) |
40 |
15
|
bnj945 |
⊢ ( ( 𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛 ∧ 𝑖 ∈ 𝑛 ) → ( 𝐺 ‘ 𝑖 ) = ( 𝑓 ‘ 𝑖 ) ) |
41 |
39 40
|
syl |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) → ( 𝐺 ‘ 𝑖 ) = ( 𝑓 ‘ 𝑖 ) ) |
42 |
18 41
|
eleqtrrd |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) → 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) ) |
43 |
16
|
anim1i |
⊢ ( ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) ∧ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) ) → ( ( 𝜒″ ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ) ∧ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) ) ) |
44 |
|
df-bnj17 |
⊢ ( ( 𝜒″ ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) ) ↔ ( ( 𝜒″ ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ) ∧ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) ) ) |
45 |
43 44
|
sylibr |
⊢ ( ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) ∧ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) ) → ( 𝜒″ ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) ) ) |
46 |
1 2 3 7 8 9 10 11 12 14 15
|
bnj999 |
⊢ ( ( 𝜒″ ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) ) → pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ ( 𝐺 ‘ suc 𝑖 ) ) |
47 |
45 46
|
syl |
⊢ ( ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) ∧ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) ) → pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ ( 𝐺 ‘ suc 𝑖 ) ) |
48 |
42 47
|
mpdan |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) → pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ ( 𝐺 ‘ suc 𝑖 ) ) |