Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1014.1 |
⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
2 |
|
bnj1014.2 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
3 |
|
bnj1014.13 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
4 |
|
bnj1014.14 |
⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) } |
5 |
|
nfcv |
⊢ Ⅎ 𝑖 𝐷 |
6 |
1 2
|
bnj911 |
⊢ ( ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) → ∀ 𝑖 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
7 |
6
|
nf5i |
⊢ Ⅎ 𝑖 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) |
8 |
5 7
|
nfrex |
⊢ Ⅎ 𝑖 ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) |
9 |
8
|
nfab |
⊢ Ⅎ 𝑖 { 𝑓 ∣ ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) } |
10 |
4 9
|
nfcxfr |
⊢ Ⅎ 𝑖 𝐵 |
11 |
10
|
nfcri |
⊢ Ⅎ 𝑖 𝑔 ∈ 𝐵 |
12 |
|
nfv |
⊢ Ⅎ 𝑖 𝑗 ∈ dom 𝑔 |
13 |
11 12
|
nfan |
⊢ Ⅎ 𝑖 ( 𝑔 ∈ 𝐵 ∧ 𝑗 ∈ dom 𝑔 ) |
14 |
|
nfv |
⊢ Ⅎ 𝑖 ( 𝑔 ‘ 𝑗 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) |
15 |
13 14
|
nfim |
⊢ Ⅎ 𝑖 ( ( 𝑔 ∈ 𝐵 ∧ 𝑗 ∈ dom 𝑔 ) → ( 𝑔 ‘ 𝑗 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) |
16 |
15
|
nf5ri |
⊢ ( ( ( 𝑔 ∈ 𝐵 ∧ 𝑗 ∈ dom 𝑔 ) → ( 𝑔 ‘ 𝑗 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) → ∀ 𝑖 ( ( 𝑔 ∈ 𝐵 ∧ 𝑗 ∈ dom 𝑔 ) → ( 𝑔 ‘ 𝑗 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) |
17 |
|
eleq1w |
⊢ ( 𝑗 = 𝑖 → ( 𝑗 ∈ dom 𝑔 ↔ 𝑖 ∈ dom 𝑔 ) ) |
18 |
17
|
anbi2d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝑔 ∈ 𝐵 ∧ 𝑗 ∈ dom 𝑔 ) ↔ ( 𝑔 ∈ 𝐵 ∧ 𝑖 ∈ dom 𝑔 ) ) ) |
19 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝑔 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑖 ) ) |
20 |
19
|
sseq1d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝑔 ‘ 𝑗 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ↔ ( 𝑔 ‘ 𝑖 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) |
21 |
18 20
|
imbi12d |
⊢ ( 𝑗 = 𝑖 → ( ( ( 𝑔 ∈ 𝐵 ∧ 𝑗 ∈ dom 𝑔 ) → ( 𝑔 ‘ 𝑗 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ↔ ( ( 𝑔 ∈ 𝐵 ∧ 𝑖 ∈ dom 𝑔 ) → ( 𝑔 ‘ 𝑖 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ) |
22 |
21
|
equcoms |
⊢ ( 𝑖 = 𝑗 → ( ( ( 𝑔 ∈ 𝐵 ∧ 𝑗 ∈ dom 𝑔 ) → ( 𝑔 ‘ 𝑗 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ↔ ( ( 𝑔 ∈ 𝐵 ∧ 𝑖 ∈ dom 𝑔 ) → ( 𝑔 ‘ 𝑖 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ) |
23 |
4
|
bnj1317 |
⊢ ( 𝑔 ∈ 𝐵 → ∀ 𝑓 𝑔 ∈ 𝐵 ) |
24 |
23
|
nf5i |
⊢ Ⅎ 𝑓 𝑔 ∈ 𝐵 |
25 |
|
nfv |
⊢ Ⅎ 𝑓 𝑖 ∈ dom 𝑔 |
26 |
24 25
|
nfan |
⊢ Ⅎ 𝑓 ( 𝑔 ∈ 𝐵 ∧ 𝑖 ∈ dom 𝑔 ) |
27 |
|
nfv |
⊢ Ⅎ 𝑓 ( 𝑔 ‘ 𝑖 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) |
28 |
26 27
|
nfim |
⊢ Ⅎ 𝑓 ( ( 𝑔 ∈ 𝐵 ∧ 𝑖 ∈ dom 𝑔 ) → ( 𝑔 ‘ 𝑖 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) |
29 |
|
eleq1w |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ∈ 𝐵 ↔ 𝑔 ∈ 𝐵 ) ) |
30 |
|
dmeq |
⊢ ( 𝑓 = 𝑔 → dom 𝑓 = dom 𝑔 ) |
31 |
30
|
eleq2d |
⊢ ( 𝑓 = 𝑔 → ( 𝑖 ∈ dom 𝑓 ↔ 𝑖 ∈ dom 𝑔 ) ) |
32 |
29 31
|
anbi12d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 ∈ 𝐵 ∧ 𝑖 ∈ dom 𝑓 ) ↔ ( 𝑔 ∈ 𝐵 ∧ 𝑖 ∈ dom 𝑔 ) ) ) |
33 |
|
fveq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ‘ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) |
34 |
33
|
sseq1d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 ‘ 𝑖 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ↔ ( 𝑔 ‘ 𝑖 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) |
35 |
32 34
|
imbi12d |
⊢ ( 𝑓 = 𝑔 → ( ( ( 𝑓 ∈ 𝐵 ∧ 𝑖 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑖 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ↔ ( ( 𝑔 ∈ 𝐵 ∧ 𝑖 ∈ dom 𝑔 ) → ( 𝑔 ‘ 𝑖 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ) |
36 |
|
ssiun2 |
⊢ ( 𝑖 ∈ dom 𝑓 → ( 𝑓 ‘ 𝑖 ) ⊆ ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) ) |
37 |
|
ssiun2 |
⊢ ( 𝑓 ∈ 𝐵 → ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) ⊆ ∪ 𝑓 ∈ 𝐵 ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) ) |
38 |
1 2 3 4
|
bnj882 |
⊢ trCl ( 𝑋 , 𝐴 , 𝑅 ) = ∪ 𝑓 ∈ 𝐵 ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) |
39 |
37 38
|
sseqtrrdi |
⊢ ( 𝑓 ∈ 𝐵 → ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) |
40 |
36 39
|
sylan9ssr |
⊢ ( ( 𝑓 ∈ 𝐵 ∧ 𝑖 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑖 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) |
41 |
28 35 40
|
chvarfv |
⊢ ( ( 𝑔 ∈ 𝐵 ∧ 𝑖 ∈ dom 𝑔 ) → ( 𝑔 ‘ 𝑖 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) |
42 |
22 41
|
speivw |
⊢ ∃ 𝑖 ( ( 𝑔 ∈ 𝐵 ∧ 𝑗 ∈ dom 𝑔 ) → ( 𝑔 ‘ 𝑗 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) |
43 |
16 42
|
bnj1131 |
⊢ ( ( 𝑔 ∈ 𝐵 ∧ 𝑗 ∈ dom 𝑔 ) → ( 𝑔 ‘ 𝑗 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) |