| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1014.1 | 
							⊢ ( 𝜑  ↔  ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bnj1014.2 | 
							⊢ ( 𝜓  ↔  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							bnj1014.13 | 
							⊢ 𝐷  =  ( ω  ∖  { ∅ } )  | 
						
						
							| 4 | 
							
								
							 | 
							bnj1014.14 | 
							⊢ 𝐵  =  { 𝑓  ∣  ∃ 𝑛  ∈  𝐷 ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) }  | 
						
						
							| 5 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑖 𝐷  | 
						
						
							| 6 | 
							
								1 2
							 | 
							bnj911 | 
							⊢ ( ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 )  →  ∀ 𝑖 ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							nf5i | 
							⊢ Ⅎ 𝑖 ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 )  | 
						
						
							| 8 | 
							
								5 7
							 | 
							nfrexw | 
							⊢ Ⅎ 𝑖 ∃ 𝑛  ∈  𝐷 ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 )  | 
						
						
							| 9 | 
							
								8
							 | 
							nfab | 
							⊢ Ⅎ 𝑖 { 𝑓  ∣  ∃ 𝑛  ∈  𝐷 ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) }  | 
						
						
							| 10 | 
							
								4 9
							 | 
							nfcxfr | 
							⊢ Ⅎ 𝑖 𝐵  | 
						
						
							| 11 | 
							
								10
							 | 
							nfcri | 
							⊢ Ⅎ 𝑖 𝑔  ∈  𝐵  | 
						
						
							| 12 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑖 𝑗  ∈  dom  𝑔  | 
						
						
							| 13 | 
							
								11 12
							 | 
							nfan | 
							⊢ Ⅎ 𝑖 ( 𝑔  ∈  𝐵  ∧  𝑗  ∈  dom  𝑔 )  | 
						
						
							| 14 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑖 ( 𝑔 ‘ 𝑗 )  ⊆   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							nfim | 
							⊢ Ⅎ 𝑖 ( ( 𝑔  ∈  𝐵  ∧  𝑗  ∈  dom  𝑔 )  →  ( 𝑔 ‘ 𝑗 )  ⊆   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							nf5ri | 
							⊢ ( ( ( 𝑔  ∈  𝐵  ∧  𝑗  ∈  dom  𝑔 )  →  ( 𝑔 ‘ 𝑗 )  ⊆   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) )  →  ∀ 𝑖 ( ( 𝑔  ∈  𝐵  ∧  𝑗  ∈  dom  𝑔 )  →  ( 𝑔 ‘ 𝑗 )  ⊆   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							eleq1w | 
							⊢ ( 𝑗  =  𝑖  →  ( 𝑗  ∈  dom  𝑔  ↔  𝑖  ∈  dom  𝑔 ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							anbi2d | 
							⊢ ( 𝑗  =  𝑖  →  ( ( 𝑔  ∈  𝐵  ∧  𝑗  ∈  dom  𝑔 )  ↔  ( 𝑔  ∈  𝐵  ∧  𝑖  ∈  dom  𝑔 ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑗  =  𝑖  →  ( 𝑔 ‘ 𝑗 )  =  ( 𝑔 ‘ 𝑖 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							sseq1d | 
							⊢ ( 𝑗  =  𝑖  →  ( ( 𝑔 ‘ 𝑗 )  ⊆   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  ↔  ( 𝑔 ‘ 𝑖 )  ⊆   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 21 | 
							
								18 20
							 | 
							imbi12d | 
							⊢ ( 𝑗  =  𝑖  →  ( ( ( 𝑔  ∈  𝐵  ∧  𝑗  ∈  dom  𝑔 )  →  ( 𝑔 ‘ 𝑗 )  ⊆   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) )  ↔  ( ( 𝑔  ∈  𝐵  ∧  𝑖  ∈  dom  𝑔 )  →  ( 𝑔 ‘ 𝑖 )  ⊆   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							equcoms | 
							⊢ ( 𝑖  =  𝑗  →  ( ( ( 𝑔  ∈  𝐵  ∧  𝑗  ∈  dom  𝑔 )  →  ( 𝑔 ‘ 𝑗 )  ⊆   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) )  ↔  ( ( 𝑔  ∈  𝐵  ∧  𝑖  ∈  dom  𝑔 )  →  ( 𝑔 ‘ 𝑖 )  ⊆   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ) ) )  | 
						
						
							| 23 | 
							
								4
							 | 
							bnj1317 | 
							⊢ ( 𝑔  ∈  𝐵  →  ∀ 𝑓 𝑔  ∈  𝐵 )  | 
						
						
							| 24 | 
							
								23
							 | 
							nf5i | 
							⊢ Ⅎ 𝑓 𝑔  ∈  𝐵  | 
						
						
							| 25 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑓 𝑖  ∈  dom  𝑔  | 
						
						
							| 26 | 
							
								24 25
							 | 
							nfan | 
							⊢ Ⅎ 𝑓 ( 𝑔  ∈  𝐵  ∧  𝑖  ∈  dom  𝑔 )  | 
						
						
							| 27 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑓 ( 𝑔 ‘ 𝑖 )  ⊆   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							nfim | 
							⊢ Ⅎ 𝑓 ( ( 𝑔  ∈  𝐵  ∧  𝑖  ∈  dom  𝑔 )  →  ( 𝑔 ‘ 𝑖 )  ⊆   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 29 | 
							
								
							 | 
							eleq1w | 
							⊢ ( 𝑓  =  𝑔  →  ( 𝑓  ∈  𝐵  ↔  𝑔  ∈  𝐵 ) )  | 
						
						
							| 30 | 
							
								
							 | 
							dmeq | 
							⊢ ( 𝑓  =  𝑔  →  dom  𝑓  =  dom  𝑔 )  | 
						
						
							| 31 | 
							
								30
							 | 
							eleq2d | 
							⊢ ( 𝑓  =  𝑔  →  ( 𝑖  ∈  dom  𝑓  ↔  𝑖  ∈  dom  𝑔 ) )  | 
						
						
							| 32 | 
							
								29 31
							 | 
							anbi12d | 
							⊢ ( 𝑓  =  𝑔  →  ( ( 𝑓  ∈  𝐵  ∧  𝑖  ∈  dom  𝑓 )  ↔  ( 𝑔  ∈  𝐵  ∧  𝑖  ∈  dom  𝑔 ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							fveq1 | 
							⊢ ( 𝑓  =  𝑔  →  ( 𝑓 ‘ 𝑖 )  =  ( 𝑔 ‘ 𝑖 ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							sseq1d | 
							⊢ ( 𝑓  =  𝑔  →  ( ( 𝑓 ‘ 𝑖 )  ⊆   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  ↔  ( 𝑔 ‘ 𝑖 )  ⊆   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 35 | 
							
								32 34
							 | 
							imbi12d | 
							⊢ ( 𝑓  =  𝑔  →  ( ( ( 𝑓  ∈  𝐵  ∧  𝑖  ∈  dom  𝑓 )  →  ( 𝑓 ‘ 𝑖 )  ⊆   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) )  ↔  ( ( 𝑔  ∈  𝐵  ∧  𝑖  ∈  dom  𝑔 )  →  ( 𝑔 ‘ 𝑖 )  ⊆   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ) ) )  | 
						
						
							| 36 | 
							
								
							 | 
							ssiun2 | 
							⊢ ( 𝑖  ∈  dom  𝑓  →  ( 𝑓 ‘ 𝑖 )  ⊆  ∪  𝑖  ∈  dom  𝑓 ( 𝑓 ‘ 𝑖 ) )  | 
						
						
							| 37 | 
							
								
							 | 
							ssiun2 | 
							⊢ ( 𝑓  ∈  𝐵  →  ∪  𝑖  ∈  dom  𝑓 ( 𝑓 ‘ 𝑖 )  ⊆  ∪  𝑓  ∈  𝐵 ∪  𝑖  ∈  dom  𝑓 ( 𝑓 ‘ 𝑖 ) )  | 
						
						
							| 38 | 
							
								1 2 3 4
							 | 
							bnj882 | 
							⊢  trCl ( 𝑋 ,  𝐴 ,  𝑅 )  =  ∪  𝑓  ∈  𝐵 ∪  𝑖  ∈  dom  𝑓 ( 𝑓 ‘ 𝑖 )  | 
						
						
							| 39 | 
							
								37 38
							 | 
							sseqtrrdi | 
							⊢ ( 𝑓  ∈  𝐵  →  ∪  𝑖  ∈  dom  𝑓 ( 𝑓 ‘ 𝑖 )  ⊆   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 40 | 
							
								36 39
							 | 
							sylan9ssr | 
							⊢ ( ( 𝑓  ∈  𝐵  ∧  𝑖  ∈  dom  𝑓 )  →  ( 𝑓 ‘ 𝑖 )  ⊆   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 41 | 
							
								28 35 40
							 | 
							chvarfv | 
							⊢ ( ( 𝑔  ∈  𝐵  ∧  𝑖  ∈  dom  𝑔 )  →  ( 𝑔 ‘ 𝑖 )  ⊆   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 42 | 
							
								22 41
							 | 
							speivw | 
							⊢ ∃ 𝑖 ( ( 𝑔  ∈  𝐵  ∧  𝑗  ∈  dom  𝑔 )  →  ( 𝑔 ‘ 𝑗 )  ⊆   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 43 | 
							
								16 42
							 | 
							bnj1131 | 
							⊢ ( ( 𝑔  ∈  𝐵  ∧  𝑗  ∈  dom  𝑔 )  →  ( 𝑔 ‘ 𝑗 )  ⊆   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) )  |