Metamath Proof Explorer


Theorem bnj1018

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). See bnj1018g for a less restrictive version requiring ax-13 . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1018.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
bnj1018.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
bnj1018.3 ( 𝜒 ↔ ( 𝑛𝐷𝑓 Fn 𝑛𝜑𝜓 ) )
bnj1018.4 ( 𝜃 ↔ ( 𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
bnj1018.5 ( 𝜏 ↔ ( 𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛 ) )
bnj1018.7 ( 𝜑′[ 𝑝 / 𝑛 ] 𝜑 )
bnj1018.8 ( 𝜓′[ 𝑝 / 𝑛 ] 𝜓 )
bnj1018.9 ( 𝜒′[ 𝑝 / 𝑛 ] 𝜒 )
bnj1018.10 ( 𝜑″[ 𝐺 / 𝑓 ] 𝜑′ )
bnj1018.11 ( 𝜓″[ 𝐺 / 𝑓 ] 𝜓′ )
bnj1018.12 ( 𝜒″[ 𝐺 / 𝑓 ] 𝜒′ )
bnj1018.13 𝐷 = ( ω ∖ { ∅ } )
bnj1018.14 𝐵 = { 𝑓 ∣ ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) }
bnj1018.15 𝐶 = 𝑦 ∈ ( 𝑓𝑚 ) pred ( 𝑦 , 𝐴 , 𝑅 )
bnj1018.16 𝐺 = ( 𝑓 ∪ { ⟨ 𝑛 , 𝐶 ⟩ } )
bnj1018.26 ( 𝜒″ ↔ ( 𝑝𝐷𝐺 Fn 𝑝𝜑″𝜓″ ) )
bnj1018.29 ( ( 𝜃𝜒𝜏𝜂 ) → 𝜒″ )
bnj1018.30 ( ( 𝜃𝜒𝜏𝜂 ) → ( 𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝 ) )
Assertion bnj1018 ( ( 𝜃𝜒𝜂 ∧ ∃ 𝑝 𝜏 ) → ( 𝐺 ‘ suc 𝑖 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) )

Proof

Step Hyp Ref Expression
1 bnj1018.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
2 bnj1018.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
3 bnj1018.3 ( 𝜒 ↔ ( 𝑛𝐷𝑓 Fn 𝑛𝜑𝜓 ) )
4 bnj1018.4 ( 𝜃 ↔ ( 𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
5 bnj1018.5 ( 𝜏 ↔ ( 𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛 ) )
6 bnj1018.7 ( 𝜑′[ 𝑝 / 𝑛 ] 𝜑 )
7 bnj1018.8 ( 𝜓′[ 𝑝 / 𝑛 ] 𝜓 )
8 bnj1018.9 ( 𝜒′[ 𝑝 / 𝑛 ] 𝜒 )
9 bnj1018.10 ( 𝜑″[ 𝐺 / 𝑓 ] 𝜑′ )
10 bnj1018.11 ( 𝜓″[ 𝐺 / 𝑓 ] 𝜓′ )
11 bnj1018.12 ( 𝜒″[ 𝐺 / 𝑓 ] 𝜒′ )
12 bnj1018.13 𝐷 = ( ω ∖ { ∅ } )
13 bnj1018.14 𝐵 = { 𝑓 ∣ ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) }
14 bnj1018.15 𝐶 = 𝑦 ∈ ( 𝑓𝑚 ) pred ( 𝑦 , 𝐴 , 𝑅 )
15 bnj1018.16 𝐺 = ( 𝑓 ∪ { ⟨ 𝑛 , 𝐶 ⟩ } )
16 bnj1018.26 ( 𝜒″ ↔ ( 𝑝𝐷𝐺 Fn 𝑝𝜑″𝜓″ ) )
17 bnj1018.29 ( ( 𝜃𝜒𝜏𝜂 ) → 𝜒″ )
18 bnj1018.30 ( ( 𝜃𝜒𝜏𝜂 ) → ( 𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝 ) )
19 df-bnj17 ( ( 𝜃𝜒𝜂 ∧ ∃ 𝑝 𝜏 ) ↔ ( ( 𝜃𝜒𝜂 ) ∧ ∃ 𝑝 𝜏 ) )
20 bnj258 ( ( 𝜃𝜒𝜏𝜂 ) ↔ ( ( 𝜃𝜒𝜂 ) ∧ 𝜏 ) )
21 20 17 sylbir ( ( ( 𝜃𝜒𝜂 ) ∧ 𝜏 ) → 𝜒″ )
22 21 ex ( ( 𝜃𝜒𝜂 ) → ( 𝜏𝜒″ ) )
23 22 eximdv ( ( 𝜃𝜒𝜂 ) → ( ∃ 𝑝 𝜏 → ∃ 𝑝 𝜒″ ) )
24 3 8 11 13 15 bnj985v ( 𝐺𝐵 ↔ ∃ 𝑝 𝜒″ )
25 23 24 syl6ibr ( ( 𝜃𝜒𝜂 ) → ( ∃ 𝑝 𝜏𝐺𝐵 ) )
26 25 imp ( ( ( 𝜃𝜒𝜂 ) ∧ ∃ 𝑝 𝜏 ) → 𝐺𝐵 )
27 19 26 sylbi ( ( 𝜃𝜒𝜂 ∧ ∃ 𝑝 𝜏 ) → 𝐺𝐵 )
28 bnj1019 ( ∃ 𝑝 ( 𝜃𝜒𝜏𝜂 ) ↔ ( 𝜃𝜒𝜂 ∧ ∃ 𝑝 𝜏 ) )
29 18 simp3d ( ( 𝜃𝜒𝜏𝜂 ) → suc 𝑖𝑝 )
30 16 bnj1235 ( 𝜒″𝐺 Fn 𝑝 )
31 fndm ( 𝐺 Fn 𝑝 → dom 𝐺 = 𝑝 )
32 17 30 31 3syl ( ( 𝜃𝜒𝜏𝜂 ) → dom 𝐺 = 𝑝 )
33 29 32 eleqtrrd ( ( 𝜃𝜒𝜏𝜂 ) → suc 𝑖 ∈ dom 𝐺 )
34 33 exlimiv ( ∃ 𝑝 ( 𝜃𝜒𝜏𝜂 ) → suc 𝑖 ∈ dom 𝐺 )
35 28 34 sylbir ( ( 𝜃𝜒𝜂 ∧ ∃ 𝑝 𝜏 ) → suc 𝑖 ∈ dom 𝐺 )
36 15 bnj918 𝐺 ∈ V
37 vex 𝑖 ∈ V
38 37 sucex suc 𝑖 ∈ V
39 1 2 12 13 36 38 bnj1015 ( ( 𝐺𝐵 ∧ suc 𝑖 ∈ dom 𝐺 ) → ( 𝐺 ‘ suc 𝑖 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) )
40 27 35 39 syl2anc ( ( 𝜃𝜒𝜂 ∧ ∃ 𝑝 𝜏 ) → ( 𝐺 ‘ suc 𝑖 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) )