Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1018.1 |
⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
2 |
|
bnj1018.2 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
3 |
|
bnj1018.3 |
⊢ ( 𝜒 ↔ ( 𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
4 |
|
bnj1018.4 |
⊢ ( 𝜃 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
5 |
|
bnj1018.5 |
⊢ ( 𝜏 ↔ ( 𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ) |
6 |
|
bnj1018.7 |
⊢ ( 𝜑′ ↔ [ 𝑝 / 𝑛 ] 𝜑 ) |
7 |
|
bnj1018.8 |
⊢ ( 𝜓′ ↔ [ 𝑝 / 𝑛 ] 𝜓 ) |
8 |
|
bnj1018.9 |
⊢ ( 𝜒′ ↔ [ 𝑝 / 𝑛 ] 𝜒 ) |
9 |
|
bnj1018.10 |
⊢ ( 𝜑″ ↔ [ 𝐺 / 𝑓 ] 𝜑′ ) |
10 |
|
bnj1018.11 |
⊢ ( 𝜓″ ↔ [ 𝐺 / 𝑓 ] 𝜓′ ) |
11 |
|
bnj1018.12 |
⊢ ( 𝜒″ ↔ [ 𝐺 / 𝑓 ] 𝜒′ ) |
12 |
|
bnj1018.13 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
13 |
|
bnj1018.14 |
⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) } |
14 |
|
bnj1018.15 |
⊢ 𝐶 = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑚 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
15 |
|
bnj1018.16 |
⊢ 𝐺 = ( 𝑓 ∪ { 〈 𝑛 , 𝐶 〉 } ) |
16 |
|
bnj1018.26 |
⊢ ( 𝜒″ ↔ ( 𝑝 ∈ 𝐷 ∧ 𝐺 Fn 𝑝 ∧ 𝜑″ ∧ 𝜓″ ) ) |
17 |
|
bnj1018.29 |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) → 𝜒″ ) |
18 |
|
bnj1018.30 |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) → ( 𝜒″ ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ) ) |
19 |
|
df-bnj17 |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃ 𝑝 𝜏 ) ↔ ( ( 𝜃 ∧ 𝜒 ∧ 𝜂 ) ∧ ∃ 𝑝 𝜏 ) ) |
20 |
|
bnj258 |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) ↔ ( ( 𝜃 ∧ 𝜒 ∧ 𝜂 ) ∧ 𝜏 ) ) |
21 |
20 17
|
sylbir |
⊢ ( ( ( 𝜃 ∧ 𝜒 ∧ 𝜂 ) ∧ 𝜏 ) → 𝜒″ ) |
22 |
21
|
ex |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜂 ) → ( 𝜏 → 𝜒″ ) ) |
23 |
22
|
eximdv |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜂 ) → ( ∃ 𝑝 𝜏 → ∃ 𝑝 𝜒″ ) ) |
24 |
3 8 11 13 15
|
bnj985 |
⊢ ( 𝐺 ∈ 𝐵 ↔ ∃ 𝑝 𝜒″ ) |
25 |
23 24
|
syl6ibr |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜂 ) → ( ∃ 𝑝 𝜏 → 𝐺 ∈ 𝐵 ) ) |
26 |
25
|
imp |
⊢ ( ( ( 𝜃 ∧ 𝜒 ∧ 𝜂 ) ∧ ∃ 𝑝 𝜏 ) → 𝐺 ∈ 𝐵 ) |
27 |
19 26
|
sylbi |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃ 𝑝 𝜏 ) → 𝐺 ∈ 𝐵 ) |
28 |
|
bnj1019 |
⊢ ( ∃ 𝑝 ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) ↔ ( 𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃ 𝑝 𝜏 ) ) |
29 |
18
|
simp3d |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) → suc 𝑖 ∈ 𝑝 ) |
30 |
16
|
bnj1235 |
⊢ ( 𝜒″ → 𝐺 Fn 𝑝 ) |
31 |
|
fndm |
⊢ ( 𝐺 Fn 𝑝 → dom 𝐺 = 𝑝 ) |
32 |
17 30 31
|
3syl |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) → dom 𝐺 = 𝑝 ) |
33 |
29 32
|
eleqtrrd |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) → suc 𝑖 ∈ dom 𝐺 ) |
34 |
33
|
exlimiv |
⊢ ( ∃ 𝑝 ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) → suc 𝑖 ∈ dom 𝐺 ) |
35 |
28 34
|
sylbir |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃ 𝑝 𝜏 ) → suc 𝑖 ∈ dom 𝐺 ) |
36 |
15
|
bnj918 |
⊢ 𝐺 ∈ V |
37 |
|
vex |
⊢ 𝑖 ∈ V |
38 |
37
|
sucex |
⊢ suc 𝑖 ∈ V |
39 |
1 2 12 13 36 38
|
bnj1015 |
⊢ ( ( 𝐺 ∈ 𝐵 ∧ suc 𝑖 ∈ dom 𝐺 ) → ( 𝐺 ‘ suc 𝑖 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) |
40 |
27 35 39
|
syl2anc |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃ 𝑝 𝜏 ) → ( 𝐺 ‘ suc 𝑖 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) |