Metamath Proof Explorer


Theorem bnj1019

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj1019 ( ∃ 𝑝 ( 𝜃𝜒𝜏𝜂 ) ↔ ( 𝜃𝜒𝜂 ∧ ∃ 𝑝 𝜏 ) )

Proof

Step Hyp Ref Expression
1 19.42v ( ∃ 𝑝 ( ( 𝜃𝜒𝜂 ) ∧ 𝜏 ) ↔ ( ( 𝜃𝜒𝜂 ) ∧ ∃ 𝑝 𝜏 ) )
2 bnj258 ( ( 𝜃𝜒𝜏𝜂 ) ↔ ( ( 𝜃𝜒𝜂 ) ∧ 𝜏 ) )
3 2 exbii ( ∃ 𝑝 ( 𝜃𝜒𝜏𝜂 ) ↔ ∃ 𝑝 ( ( 𝜃𝜒𝜂 ) ∧ 𝜏 ) )
4 df-bnj17 ( ( 𝜃𝜒𝜂 ∧ ∃ 𝑝 𝜏 ) ↔ ( ( 𝜃𝜒𝜂 ) ∧ ∃ 𝑝 𝜏 ) )
5 1 3 4 3bitr4i ( ∃ 𝑝 ( 𝜃𝜒𝜏𝜂 ) ↔ ( 𝜃𝜒𝜂 ∧ ∃ 𝑝 𝜏 ) )