Metamath Proof Explorer


Theorem bnj1020

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1020.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
bnj1020.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
bnj1020.3 ( 𝜒 ↔ ( 𝑛𝐷𝑓 Fn 𝑛𝜑𝜓 ) )
bnj1020.4 ( 𝜃 ↔ ( 𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
bnj1020.5 ( 𝜏 ↔ ( 𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛 ) )
bnj1020.6 ( 𝜂 ↔ ( 𝑖𝑛𝑦 ∈ ( 𝑓𝑖 ) ) )
bnj1020.7 ( 𝜑′[ 𝑝 / 𝑛 ] 𝜑 )
bnj1020.8 ( 𝜓′[ 𝑝 / 𝑛 ] 𝜓 )
bnj1020.9 ( 𝜒′[ 𝑝 / 𝑛 ] 𝜒 )
bnj1020.10 ( 𝜑″[ 𝐺 / 𝑓 ] 𝜑′ )
bnj1020.11 ( 𝜓″[ 𝐺 / 𝑓 ] 𝜓′ )
bnj1020.12 ( 𝜒″[ 𝐺 / 𝑓 ] 𝜒′ )
bnj1020.13 𝐷 = ( ω ∖ { ∅ } )
bnj1020.14 𝐵 = { 𝑓 ∣ ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) }
bnj1020.15 𝐶 = 𝑦 ∈ ( 𝑓𝑚 ) pred ( 𝑦 , 𝐴 , 𝑅 )
bnj1020.16 𝐺 = ( 𝑓 ∪ { ⟨ 𝑛 , 𝐶 ⟩ } )
bnj1020.26 ( 𝜒″ ↔ ( 𝑝𝐷𝐺 Fn 𝑝𝜑″𝜓″ ) )
Assertion bnj1020 ( ( 𝜃𝜒𝜂 ∧ ∃ 𝑝 𝜏 ) → pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) )

Proof

Step Hyp Ref Expression
1 bnj1020.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
2 bnj1020.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
3 bnj1020.3 ( 𝜒 ↔ ( 𝑛𝐷𝑓 Fn 𝑛𝜑𝜓 ) )
4 bnj1020.4 ( 𝜃 ↔ ( 𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
5 bnj1020.5 ( 𝜏 ↔ ( 𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛 ) )
6 bnj1020.6 ( 𝜂 ↔ ( 𝑖𝑛𝑦 ∈ ( 𝑓𝑖 ) ) )
7 bnj1020.7 ( 𝜑′[ 𝑝 / 𝑛 ] 𝜑 )
8 bnj1020.8 ( 𝜓′[ 𝑝 / 𝑛 ] 𝜓 )
9 bnj1020.9 ( 𝜒′[ 𝑝 / 𝑛 ] 𝜒 )
10 bnj1020.10 ( 𝜑″[ 𝐺 / 𝑓 ] 𝜑′ )
11 bnj1020.11 ( 𝜓″[ 𝐺 / 𝑓 ] 𝜓′ )
12 bnj1020.12 ( 𝜒″[ 𝐺 / 𝑓 ] 𝜒′ )
13 bnj1020.13 𝐷 = ( ω ∖ { ∅ } )
14 bnj1020.14 𝐵 = { 𝑓 ∣ ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) }
15 bnj1020.15 𝐶 = 𝑦 ∈ ( 𝑓𝑚 ) pred ( 𝑦 , 𝐴 , 𝑅 )
16 bnj1020.16 𝐺 = ( 𝑓 ∪ { ⟨ 𝑛 , 𝐶 ⟩ } )
17 bnj1020.26 ( 𝜒″ ↔ ( 𝑝𝐷𝐺 Fn 𝑝𝜑″𝜓″ ) )
18 bnj1019 ( ∃ 𝑝 ( 𝜃𝜒𝜏𝜂 ) ↔ ( 𝜃𝜒𝜂 ∧ ∃ 𝑝 𝜏 ) )
19 1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 bnj998 ( ( 𝜃𝜒𝜏𝜂 ) → 𝜒″ )
20 3 5 6 13 19 bnj1001 ( ( 𝜃𝜒𝜏𝜂 ) → ( 𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝 ) )
21 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 20 bnj1006 ( ( 𝜃𝜒𝜏𝜂 ) → pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ ( 𝐺 ‘ suc 𝑖 ) )
22 21 exlimiv ( ∃ 𝑝 ( 𝜃𝜒𝜏𝜂 ) → pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ ( 𝐺 ‘ suc 𝑖 ) )
23 18 22 sylbir ( ( 𝜃𝜒𝜂 ∧ ∃ 𝑝 𝜏 ) → pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ ( 𝐺 ‘ suc 𝑖 ) )
24 1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 19 20 bnj1018 ( ( 𝜃𝜒𝜂 ∧ ∃ 𝑝 𝜏 ) → ( 𝐺 ‘ suc 𝑖 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) )
25 23 24 sstrd ( ( 𝜃𝜒𝜂 ∧ ∃ 𝑝 𝜏 ) → pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) )