Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1020.1 |
⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
2 |
|
bnj1020.2 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
3 |
|
bnj1020.3 |
⊢ ( 𝜒 ↔ ( 𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
4 |
|
bnj1020.4 |
⊢ ( 𝜃 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
5 |
|
bnj1020.5 |
⊢ ( 𝜏 ↔ ( 𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ) |
6 |
|
bnj1020.6 |
⊢ ( 𝜂 ↔ ( 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
7 |
|
bnj1020.7 |
⊢ ( 𝜑′ ↔ [ 𝑝 / 𝑛 ] 𝜑 ) |
8 |
|
bnj1020.8 |
⊢ ( 𝜓′ ↔ [ 𝑝 / 𝑛 ] 𝜓 ) |
9 |
|
bnj1020.9 |
⊢ ( 𝜒′ ↔ [ 𝑝 / 𝑛 ] 𝜒 ) |
10 |
|
bnj1020.10 |
⊢ ( 𝜑″ ↔ [ 𝐺 / 𝑓 ] 𝜑′ ) |
11 |
|
bnj1020.11 |
⊢ ( 𝜓″ ↔ [ 𝐺 / 𝑓 ] 𝜓′ ) |
12 |
|
bnj1020.12 |
⊢ ( 𝜒″ ↔ [ 𝐺 / 𝑓 ] 𝜒′ ) |
13 |
|
bnj1020.13 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
14 |
|
bnj1020.14 |
⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) } |
15 |
|
bnj1020.15 |
⊢ 𝐶 = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑚 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
16 |
|
bnj1020.16 |
⊢ 𝐺 = ( 𝑓 ∪ { 〈 𝑛 , 𝐶 〉 } ) |
17 |
|
bnj1020.26 |
⊢ ( 𝜒″ ↔ ( 𝑝 ∈ 𝐷 ∧ 𝐺 Fn 𝑝 ∧ 𝜑″ ∧ 𝜓″ ) ) |
18 |
|
bnj1019 |
⊢ ( ∃ 𝑝 ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) ↔ ( 𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃ 𝑝 𝜏 ) ) |
19 |
1 2 3 4 5 7 8 9 10 11 12 13 14 15 16
|
bnj998 |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) → 𝜒″ ) |
20 |
3 5 6 13 19
|
bnj1001 |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) → ( 𝜒″ ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ) ) |
21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 20
|
bnj1006 |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) → pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ ( 𝐺 ‘ suc 𝑖 ) ) |
22 |
21
|
exlimiv |
⊢ ( ∃ 𝑝 ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) → pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ ( 𝐺 ‘ suc 𝑖 ) ) |
23 |
18 22
|
sylbir |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃ 𝑝 𝜏 ) → pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ ( 𝐺 ‘ suc 𝑖 ) ) |
24 |
1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 19 20
|
bnj1018 |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃ 𝑝 𝜏 ) → ( 𝐺 ‘ suc 𝑖 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) |
25 |
23 24
|
sstrd |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃ 𝑝 𝜏 ) → pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) |