Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1030.1 |
⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
2 |
|
bnj1030.2 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
3 |
|
bnj1030.3 |
⊢ ( 𝜒 ↔ ( 𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
4 |
|
bnj1030.4 |
⊢ ( 𝜃 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) |
5 |
|
bnj1030.5 |
⊢ ( 𝜏 ↔ ( 𝐵 ∈ V ∧ TrFo ( 𝐵 , 𝐴 , 𝑅 ) ∧ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) ) |
6 |
|
bnj1030.6 |
⊢ ( 𝜁 ↔ ( 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
7 |
|
bnj1030.7 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
8 |
|
bnj1030.8 |
⊢ 𝐾 = { 𝑓 ∣ ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) } |
9 |
|
bnj1030.9 |
⊢ ( 𝜂 ↔ ( ( 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) ) |
10 |
|
bnj1030.10 |
⊢ ( 𝜌 ↔ ∀ 𝑗 ∈ 𝑛 ( 𝑗 E 𝑖 → [ 𝑗 / 𝑖 ] 𝜂 ) ) |
11 |
|
bnj1030.11 |
⊢ ( 𝜑′ ↔ [ 𝑗 / 𝑖 ] 𝜑 ) |
12 |
|
bnj1030.12 |
⊢ ( 𝜓′ ↔ [ 𝑗 / 𝑖 ] 𝜓 ) |
13 |
|
bnj1030.13 |
⊢ ( 𝜒′ ↔ [ 𝑗 / 𝑖 ] 𝜒 ) |
14 |
|
bnj1030.14 |
⊢ ( 𝜃′ ↔ [ 𝑗 / 𝑖 ] 𝜃 ) |
15 |
|
bnj1030.15 |
⊢ ( 𝜏′ ↔ [ 𝑗 / 𝑖 ] 𝜏 ) |
16 |
|
bnj1030.16 |
⊢ ( 𝜁′ ↔ [ 𝑗 / 𝑖 ] 𝜁 ) |
17 |
|
bnj1030.17 |
⊢ ( 𝜂′ ↔ [ 𝑗 / 𝑖 ] 𝜂 ) |
18 |
|
bnj1030.18 |
⊢ ( 𝜎 ↔ ( ( 𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖 ) → 𝜂′ ) ) |
19 |
|
bnj1030.19 |
⊢ ( 𝜑0 ↔ ( 𝑖 ∈ 𝑛 ∧ 𝜎 ∧ 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓 ) ) |
20 |
|
19.23vv |
⊢ ( ∀ 𝑛 ∀ 𝑖 ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → 𝑧 ∈ 𝐵 ) ↔ ( ∃ 𝑛 ∃ 𝑖 ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → 𝑧 ∈ 𝐵 ) ) |
21 |
20
|
albii |
⊢ ( ∀ 𝑓 ∀ 𝑛 ∀ 𝑖 ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → 𝑧 ∈ 𝐵 ) ↔ ∀ 𝑓 ( ∃ 𝑛 ∃ 𝑖 ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → 𝑧 ∈ 𝐵 ) ) |
22 |
|
19.23v |
⊢ ( ∀ 𝑓 ( ∃ 𝑛 ∃ 𝑖 ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → 𝑧 ∈ 𝐵 ) ↔ ( ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → 𝑧 ∈ 𝐵 ) ) |
23 |
21 22
|
bitri |
⊢ ( ∀ 𝑓 ∀ 𝑛 ∀ 𝑖 ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → 𝑧 ∈ 𝐵 ) ↔ ( ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → 𝑧 ∈ 𝐵 ) ) |
24 |
7
|
bnj1071 |
⊢ ( 𝑛 ∈ 𝐷 → E Fr 𝑛 ) |
25 |
3 24
|
bnj769 |
⊢ ( 𝜒 → E Fr 𝑛 ) |
26 |
25
|
bnj707 |
⊢ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → E Fr 𝑛 ) |
27 |
2 8 9 17
|
bnj1123 |
⊢ ( 𝜂′ ↔ ( ( 𝑓 ∈ 𝐾 ∧ 𝑗 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑗 ) ⊆ 𝐵 ) ) |
28 |
2 3 5 7 18 19 27
|
bnj1118 |
⊢ ∃ 𝑗 ( ( 𝑖 ≠ ∅ ∧ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) ∧ 𝜑0 ) ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) |
29 |
1 3 5
|
bnj1097 |
⊢ ( ( 𝑖 = ∅ ∧ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) ∧ 𝜑0 ) ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) |
30 |
28 29
|
bnj1109 |
⊢ ∃ 𝑗 ( ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) ∧ 𝜑0 ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) |
31 |
30 2 3
|
bnj1093 |
⊢ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → ∀ 𝑖 ∃ 𝑗 ( 𝜑0 → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) ) |
32 |
9 10 17 18 19 31
|
bnj1090 |
⊢ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → ∀ 𝑖 ∈ 𝑛 ( 𝜌 → 𝜂 ) ) |
33 |
|
vex |
⊢ 𝑛 ∈ V |
34 |
33 10
|
bnj110 |
⊢ ( ( E Fr 𝑛 ∧ ∀ 𝑖 ∈ 𝑛 ( 𝜌 → 𝜂 ) ) → ∀ 𝑖 ∈ 𝑛 𝜂 ) |
35 |
26 32 34
|
syl2anc |
⊢ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → ∀ 𝑖 ∈ 𝑛 𝜂 ) |
36 |
4 5 3 6 9 35 8
|
bnj1121 |
⊢ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → 𝑧 ∈ 𝐵 ) |
37 |
36
|
gen2 |
⊢ ∀ 𝑛 ∀ 𝑖 ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → 𝑧 ∈ 𝐵 ) |
38 |
23 37
|
mpgbi |
⊢ ( ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → 𝑧 ∈ 𝐵 ) |
39 |
1 2 3 4 5 6 7 8 38
|
bnj1034 |
⊢ ( ( 𝜃 ∧ 𝜏 ) → trCl ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) |