Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1033.1 |
⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
2 |
|
bnj1033.2 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
3 |
|
bnj1033.3 |
⊢ ( 𝜒 ↔ ( 𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
4 |
|
bnj1033.4 |
⊢ ( 𝜃 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) |
5 |
|
bnj1033.5 |
⊢ ( 𝜏 ↔ ( 𝐵 ∈ V ∧ TrFo ( 𝐵 , 𝐴 , 𝑅 ) ∧ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) ) |
6 |
|
bnj1033.6 |
⊢ ( 𝜂 ↔ 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) |
7 |
|
bnj1033.7 |
⊢ ( 𝜁 ↔ ( 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
8 |
|
bnj1033.8 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
9 |
|
bnj1033.9 |
⊢ 𝐾 = { 𝑓 ∣ ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) } |
10 |
|
bnj1033.10 |
⊢ ( ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → 𝑧 ∈ 𝐵 ) |
11 |
1 2 8 9 3
|
bnj983 |
⊢ ( 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ↔ ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
12 |
|
19.42v |
⊢ ( ∃ 𝑖 ( ( 𝜃 ∧ 𝜏 ) ∧ ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ↔ ( ( 𝜃 ∧ 𝜏 ) ∧ ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
13 |
|
df-3an |
⊢ ( ( 𝜃 ∧ 𝜏 ∧ ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ↔ ( ( 𝜃 ∧ 𝜏 ) ∧ ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
14 |
13
|
exbii |
⊢ ( ∃ 𝑖 ( 𝜃 ∧ 𝜏 ∧ ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ↔ ∃ 𝑖 ( ( 𝜃 ∧ 𝜏 ) ∧ ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
15 |
|
df-3an |
⊢ ( ( 𝜃 ∧ 𝜏 ∧ ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ↔ ( ( 𝜃 ∧ 𝜏 ) ∧ ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
16 |
12 14 15
|
3bitr4i |
⊢ ( ∃ 𝑖 ( 𝜃 ∧ 𝜏 ∧ ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ↔ ( 𝜃 ∧ 𝜏 ∧ ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
17 |
16
|
exbii |
⊢ ( ∃ 𝑛 ∃ 𝑖 ( 𝜃 ∧ 𝜏 ∧ ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ↔ ∃ 𝑛 ( 𝜃 ∧ 𝜏 ∧ ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
18 |
|
19.42v |
⊢ ( ∃ 𝑛 ( ( 𝜃 ∧ 𝜏 ) ∧ ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ↔ ( ( 𝜃 ∧ 𝜏 ) ∧ ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
19 |
15
|
exbii |
⊢ ( ∃ 𝑛 ( 𝜃 ∧ 𝜏 ∧ ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ↔ ∃ 𝑛 ( ( 𝜃 ∧ 𝜏 ) ∧ ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
20 |
|
df-3an |
⊢ ( ( 𝜃 ∧ 𝜏 ∧ ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ↔ ( ( 𝜃 ∧ 𝜏 ) ∧ ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
21 |
18 19 20
|
3bitr4i |
⊢ ( ∃ 𝑛 ( 𝜃 ∧ 𝜏 ∧ ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ↔ ( 𝜃 ∧ 𝜏 ∧ ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
22 |
17 21
|
bitri |
⊢ ( ∃ 𝑛 ∃ 𝑖 ( 𝜃 ∧ 𝜏 ∧ ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ↔ ( 𝜃 ∧ 𝜏 ∧ ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
23 |
22
|
exbii |
⊢ ( ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜃 ∧ 𝜏 ∧ ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ↔ ∃ 𝑓 ( 𝜃 ∧ 𝜏 ∧ ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
24 |
|
19.42v |
⊢ ( ∃ 𝑓 ( ( 𝜃 ∧ 𝜏 ) ∧ ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ↔ ( ( 𝜃 ∧ 𝜏 ) ∧ ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
25 |
20
|
exbii |
⊢ ( ∃ 𝑓 ( 𝜃 ∧ 𝜏 ∧ ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ↔ ∃ 𝑓 ( ( 𝜃 ∧ 𝜏 ) ∧ ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
26 |
|
df-3an |
⊢ ( ( 𝜃 ∧ 𝜏 ∧ ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ↔ ( ( 𝜃 ∧ 𝜏 ) ∧ ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
27 |
24 25 26
|
3bitr4i |
⊢ ( ∃ 𝑓 ( 𝜃 ∧ 𝜏 ∧ ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ↔ ( 𝜃 ∧ 𝜏 ∧ ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
28 |
23 27
|
bitri |
⊢ ( ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜃 ∧ 𝜏 ∧ ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ↔ ( 𝜃 ∧ 𝜏 ∧ ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
29 |
|
bnj255 |
⊢ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) ↔ ( 𝜃 ∧ 𝜏 ∧ ( 𝜒 ∧ 𝜁 ) ) ) |
30 |
7
|
anbi2i |
⊢ ( ( 𝜒 ∧ 𝜁 ) ↔ ( 𝜒 ∧ ( 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
31 |
|
3anass |
⊢ ( ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ( 𝜒 ∧ ( 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
32 |
30 31
|
bitr4i |
⊢ ( ( 𝜒 ∧ 𝜁 ) ↔ ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
33 |
32
|
3anbi3i |
⊢ ( ( 𝜃 ∧ 𝜏 ∧ ( 𝜒 ∧ 𝜁 ) ) ↔ ( 𝜃 ∧ 𝜏 ∧ ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
34 |
29 33
|
bitri |
⊢ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) ↔ ( 𝜃 ∧ 𝜏 ∧ ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
35 |
34
|
3exbii |
⊢ ( ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) ↔ ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜃 ∧ 𝜏 ∧ ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
36 |
35 10
|
sylbir |
⊢ ( ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜃 ∧ 𝜏 ∧ ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) → 𝑧 ∈ 𝐵 ) |
37 |
28 36
|
sylbir |
⊢ ( ( 𝜃 ∧ 𝜏 ∧ ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) → 𝑧 ∈ 𝐵 ) |
38 |
11 37
|
syl3an3b |
⊢ ( ( 𝜃 ∧ 𝜏 ∧ 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) → 𝑧 ∈ 𝐵 ) |
39 |
38
|
3expia |
⊢ ( ( 𝜃 ∧ 𝜏 ) → ( 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → 𝑧 ∈ 𝐵 ) ) |
40 |
39
|
ssrdv |
⊢ ( ( 𝜃 ∧ 𝜏 ) → trCl ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) |