Metamath Proof Explorer


Theorem bnj1033

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1033.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
bnj1033.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
bnj1033.3 ( 𝜒 ↔ ( 𝑛𝐷𝑓 Fn 𝑛𝜑𝜓 ) )
bnj1033.4 ( 𝜃 ↔ ( 𝑅 FrSe 𝐴𝑋𝐴 ) )
bnj1033.5 ( 𝜏 ↔ ( 𝐵 ∈ V ∧ TrFo ( 𝐵 , 𝐴 , 𝑅 ) ∧ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) )
bnj1033.6 ( 𝜂𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) )
bnj1033.7 ( 𝜁 ↔ ( 𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) )
bnj1033.8 𝐷 = ( ω ∖ { ∅ } )
bnj1033.9 𝐾 = { 𝑓 ∣ ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) }
bnj1033.10 ( ∃ 𝑓𝑛𝑖 ( 𝜃𝜏𝜒𝜁 ) → 𝑧𝐵 )
Assertion bnj1033 ( ( 𝜃𝜏 ) → trCl ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 )

Proof

Step Hyp Ref Expression
1 bnj1033.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
2 bnj1033.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
3 bnj1033.3 ( 𝜒 ↔ ( 𝑛𝐷𝑓 Fn 𝑛𝜑𝜓 ) )
4 bnj1033.4 ( 𝜃 ↔ ( 𝑅 FrSe 𝐴𝑋𝐴 ) )
5 bnj1033.5 ( 𝜏 ↔ ( 𝐵 ∈ V ∧ TrFo ( 𝐵 , 𝐴 , 𝑅 ) ∧ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) )
6 bnj1033.6 ( 𝜂𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) )
7 bnj1033.7 ( 𝜁 ↔ ( 𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) )
8 bnj1033.8 𝐷 = ( ω ∖ { ∅ } )
9 bnj1033.9 𝐾 = { 𝑓 ∣ ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) }
10 bnj1033.10 ( ∃ 𝑓𝑛𝑖 ( 𝜃𝜏𝜒𝜁 ) → 𝑧𝐵 )
11 1 2 8 9 3 bnj983 ( 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ↔ ∃ 𝑓𝑛𝑖 ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) )
12 19.42v ( ∃ 𝑖 ( ( 𝜃𝜏 ) ∧ ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) ↔ ( ( 𝜃𝜏 ) ∧ ∃ 𝑖 ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) )
13 df-3an ( ( 𝜃𝜏 ∧ ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) ↔ ( ( 𝜃𝜏 ) ∧ ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) )
14 13 exbii ( ∃ 𝑖 ( 𝜃𝜏 ∧ ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) ↔ ∃ 𝑖 ( ( 𝜃𝜏 ) ∧ ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) )
15 df-3an ( ( 𝜃𝜏 ∧ ∃ 𝑖 ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) ↔ ( ( 𝜃𝜏 ) ∧ ∃ 𝑖 ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) )
16 12 14 15 3bitr4i ( ∃ 𝑖 ( 𝜃𝜏 ∧ ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) ↔ ( 𝜃𝜏 ∧ ∃ 𝑖 ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) )
17 16 exbii ( ∃ 𝑛𝑖 ( 𝜃𝜏 ∧ ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) ↔ ∃ 𝑛 ( 𝜃𝜏 ∧ ∃ 𝑖 ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) )
18 19.42v ( ∃ 𝑛 ( ( 𝜃𝜏 ) ∧ ∃ 𝑖 ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) ↔ ( ( 𝜃𝜏 ) ∧ ∃ 𝑛𝑖 ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) )
19 15 exbii ( ∃ 𝑛 ( 𝜃𝜏 ∧ ∃ 𝑖 ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) ↔ ∃ 𝑛 ( ( 𝜃𝜏 ) ∧ ∃ 𝑖 ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) )
20 df-3an ( ( 𝜃𝜏 ∧ ∃ 𝑛𝑖 ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) ↔ ( ( 𝜃𝜏 ) ∧ ∃ 𝑛𝑖 ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) )
21 18 19 20 3bitr4i ( ∃ 𝑛 ( 𝜃𝜏 ∧ ∃ 𝑖 ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) ↔ ( 𝜃𝜏 ∧ ∃ 𝑛𝑖 ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) )
22 17 21 bitri ( ∃ 𝑛𝑖 ( 𝜃𝜏 ∧ ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) ↔ ( 𝜃𝜏 ∧ ∃ 𝑛𝑖 ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) )
23 22 exbii ( ∃ 𝑓𝑛𝑖 ( 𝜃𝜏 ∧ ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) ↔ ∃ 𝑓 ( 𝜃𝜏 ∧ ∃ 𝑛𝑖 ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) )
24 19.42v ( ∃ 𝑓 ( ( 𝜃𝜏 ) ∧ ∃ 𝑛𝑖 ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) ↔ ( ( 𝜃𝜏 ) ∧ ∃ 𝑓𝑛𝑖 ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) )
25 20 exbii ( ∃ 𝑓 ( 𝜃𝜏 ∧ ∃ 𝑛𝑖 ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) ↔ ∃ 𝑓 ( ( 𝜃𝜏 ) ∧ ∃ 𝑛𝑖 ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) )
26 df-3an ( ( 𝜃𝜏 ∧ ∃ 𝑓𝑛𝑖 ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) ↔ ( ( 𝜃𝜏 ) ∧ ∃ 𝑓𝑛𝑖 ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) )
27 24 25 26 3bitr4i ( ∃ 𝑓 ( 𝜃𝜏 ∧ ∃ 𝑛𝑖 ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) ↔ ( 𝜃𝜏 ∧ ∃ 𝑓𝑛𝑖 ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) )
28 23 27 bitri ( ∃ 𝑓𝑛𝑖 ( 𝜃𝜏 ∧ ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) ↔ ( 𝜃𝜏 ∧ ∃ 𝑓𝑛𝑖 ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) )
29 bnj255 ( ( 𝜃𝜏𝜒𝜁 ) ↔ ( 𝜃𝜏 ∧ ( 𝜒𝜁 ) ) )
30 7 anbi2i ( ( 𝜒𝜁 ) ↔ ( 𝜒 ∧ ( 𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) )
31 3anass ( ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ↔ ( 𝜒 ∧ ( 𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) )
32 30 31 bitr4i ( ( 𝜒𝜁 ) ↔ ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) )
33 32 3anbi3i ( ( 𝜃𝜏 ∧ ( 𝜒𝜁 ) ) ↔ ( 𝜃𝜏 ∧ ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) )
34 29 33 bitri ( ( 𝜃𝜏𝜒𝜁 ) ↔ ( 𝜃𝜏 ∧ ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) )
35 34 3exbii ( ∃ 𝑓𝑛𝑖 ( 𝜃𝜏𝜒𝜁 ) ↔ ∃ 𝑓𝑛𝑖 ( 𝜃𝜏 ∧ ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) )
36 35 10 sylbir ( ∃ 𝑓𝑛𝑖 ( 𝜃𝜏 ∧ ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) → 𝑧𝐵 )
37 28 36 sylbir ( ( 𝜃𝜏 ∧ ∃ 𝑓𝑛𝑖 ( 𝜒𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ) → 𝑧𝐵 )
38 11 37 syl3an3b ( ( 𝜃𝜏𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) → 𝑧𝐵 )
39 38 3expia ( ( 𝜃𝜏 ) → ( 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → 𝑧𝐵 ) )
40 39 ssrdv ( ( 𝜃𝜏 ) → trCl ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 )