Metamath Proof Explorer


Theorem bnj1049

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1049.1 ( 𝜁 ↔ ( 𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) )
bnj1049.2 ( 𝜂 ↔ ( ( 𝜃𝜏𝜒𝜁 ) → 𝑧𝐵 ) )
Assertion bnj1049 ( ∀ 𝑖𝑛 𝜂 ↔ ∀ 𝑖 𝜂 )

Proof

Step Hyp Ref Expression
1 bnj1049.1 ( 𝜁 ↔ ( 𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) )
2 bnj1049.2 ( 𝜂 ↔ ( ( 𝜃𝜏𝜒𝜁 ) → 𝑧𝐵 ) )
3 df-ral ( ∀ 𝑖𝑛 𝜂 ↔ ∀ 𝑖 ( 𝑖𝑛𝜂 ) )
4 2 imbi2i ( ( 𝑖𝑛𝜂 ) ↔ ( 𝑖𝑛 → ( ( 𝜃𝜏𝜒𝜁 ) → 𝑧𝐵 ) ) )
5 impexp ( ( ( 𝑖𝑛 ∧ ( 𝜃𝜏𝜒𝜁 ) ) → 𝑧𝐵 ) ↔ ( 𝑖𝑛 → ( ( 𝜃𝜏𝜒𝜁 ) → 𝑧𝐵 ) ) )
6 4 5 bitr4i ( ( 𝑖𝑛𝜂 ) ↔ ( ( 𝑖𝑛 ∧ ( 𝜃𝜏𝜒𝜁 ) ) → 𝑧𝐵 ) )
7 1 simplbi ( 𝜁𝑖𝑛 )
8 7 bnj708 ( ( 𝜃𝜏𝜒𝜁 ) → 𝑖𝑛 )
9 8 pm4.71ri ( ( 𝜃𝜏𝜒𝜁 ) ↔ ( 𝑖𝑛 ∧ ( 𝜃𝜏𝜒𝜁 ) ) )
10 9 bicomi ( ( 𝑖𝑛 ∧ ( 𝜃𝜏𝜒𝜁 ) ) ↔ ( 𝜃𝜏𝜒𝜁 ) )
11 10 imbi1i ( ( ( 𝑖𝑛 ∧ ( 𝜃𝜏𝜒𝜁 ) ) → 𝑧𝐵 ) ↔ ( ( 𝜃𝜏𝜒𝜁 ) → 𝑧𝐵 ) )
12 6 11 bitri ( ( 𝑖𝑛𝜂 ) ↔ ( ( 𝜃𝜏𝜒𝜁 ) → 𝑧𝐵 ) )
13 12 2 bitr4i ( ( 𝑖𝑛𝜂 ) ↔ 𝜂 )
14 13 albii ( ∀ 𝑖 ( 𝑖𝑛𝜂 ) ↔ ∀ 𝑖 𝜂 )
15 3 14 bitri ( ∀ 𝑖𝑛 𝜂 ↔ ∀ 𝑖 𝜂 )