Metamath Proof Explorer


Theorem bnj1052

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1052.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
bnj1052.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
bnj1052.3 ( 𝜒 ↔ ( 𝑛𝐷𝑓 Fn 𝑛𝜑𝜓 ) )
bnj1052.4 ( 𝜃 ↔ ( 𝑅 FrSe 𝐴𝑋𝐴 ) )
bnj1052.5 ( 𝜏 ↔ ( 𝐵 ∈ V ∧ TrFo ( 𝐵 , 𝐴 , 𝑅 ) ∧ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) )
bnj1052.6 ( 𝜁 ↔ ( 𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) )
bnj1052.7 𝐷 = ( ω ∖ { ∅ } )
bnj1052.8 𝐾 = { 𝑓 ∣ ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) }
bnj1052.9 ( 𝜂 ↔ ( ( 𝜃𝜏𝜒𝜁 ) → 𝑧𝐵 ) )
bnj1052.10 ( 𝜌 ↔ ∀ 𝑗𝑛 ( 𝑗 E 𝑖[ 𝑗 / 𝑖 ] 𝜂 ) )
bnj1052.37 ( ( 𝜃𝜏𝜒𝜁 ) → ( E Fr 𝑛 ∧ ∀ 𝑖𝑛 ( 𝜌𝜂 ) ) )
Assertion bnj1052 ( ( 𝜃𝜏 ) → trCl ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 )

Proof

Step Hyp Ref Expression
1 bnj1052.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
2 bnj1052.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
3 bnj1052.3 ( 𝜒 ↔ ( 𝑛𝐷𝑓 Fn 𝑛𝜑𝜓 ) )
4 bnj1052.4 ( 𝜃 ↔ ( 𝑅 FrSe 𝐴𝑋𝐴 ) )
5 bnj1052.5 ( 𝜏 ↔ ( 𝐵 ∈ V ∧ TrFo ( 𝐵 , 𝐴 , 𝑅 ) ∧ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) )
6 bnj1052.6 ( 𝜁 ↔ ( 𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) )
7 bnj1052.7 𝐷 = ( ω ∖ { ∅ } )
8 bnj1052.8 𝐾 = { 𝑓 ∣ ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) }
9 bnj1052.9 ( 𝜂 ↔ ( ( 𝜃𝜏𝜒𝜁 ) → 𝑧𝐵 ) )
10 bnj1052.10 ( 𝜌 ↔ ∀ 𝑗𝑛 ( 𝑗 E 𝑖[ 𝑗 / 𝑖 ] 𝜂 ) )
11 bnj1052.37 ( ( 𝜃𝜏𝜒𝜁 ) → ( E Fr 𝑛 ∧ ∀ 𝑖𝑛 ( 𝜌𝜂 ) ) )
12 19.23vv ( ∀ 𝑛𝑖 ( ( 𝜃𝜏𝜒𝜁 ) → 𝑧𝐵 ) ↔ ( ∃ 𝑛𝑖 ( 𝜃𝜏𝜒𝜁 ) → 𝑧𝐵 ) )
13 12 albii ( ∀ 𝑓𝑛𝑖 ( ( 𝜃𝜏𝜒𝜁 ) → 𝑧𝐵 ) ↔ ∀ 𝑓 ( ∃ 𝑛𝑖 ( 𝜃𝜏𝜒𝜁 ) → 𝑧𝐵 ) )
14 19.23v ( ∀ 𝑓 ( ∃ 𝑛𝑖 ( 𝜃𝜏𝜒𝜁 ) → 𝑧𝐵 ) ↔ ( ∃ 𝑓𝑛𝑖 ( 𝜃𝜏𝜒𝜁 ) → 𝑧𝐵 ) )
15 13 14 bitri ( ∀ 𝑓𝑛𝑖 ( ( 𝜃𝜏𝜒𝜁 ) → 𝑧𝐵 ) ↔ ( ∃ 𝑓𝑛𝑖 ( 𝜃𝜏𝜒𝜁 ) → 𝑧𝐵 ) )
16 vex 𝑛 ∈ V
17 16 10 bnj110 ( ( E Fr 𝑛 ∧ ∀ 𝑖𝑛 ( 𝜌𝜂 ) ) → ∀ 𝑖𝑛 𝜂 )
18 6 9 bnj1049 ( ∀ 𝑖𝑛 𝜂 ↔ ∀ 𝑖 𝜂 )
19 17 18 sylib ( ( E Fr 𝑛 ∧ ∀ 𝑖𝑛 ( 𝜌𝜂 ) ) → ∀ 𝑖 𝜂 )
20 19 19.21bi ( ( E Fr 𝑛 ∧ ∀ 𝑖𝑛 ( 𝜌𝜂 ) ) → 𝜂 )
21 20 9 sylib ( ( E Fr 𝑛 ∧ ∀ 𝑖𝑛 ( 𝜌𝜂 ) ) → ( ( 𝜃𝜏𝜒𝜁 ) → 𝑧𝐵 ) )
22 11 21 mpcom ( ( 𝜃𝜏𝜒𝜁 ) → 𝑧𝐵 )
23 22 gen2 𝑛𝑖 ( ( 𝜃𝜏𝜒𝜁 ) → 𝑧𝐵 )
24 15 23 mpgbi ( ∃ 𝑓𝑛𝑖 ( 𝜃𝜏𝜒𝜁 ) → 𝑧𝐵 )
25 1 2 3 4 5 6 7 8 24 bnj1034 ( ( 𝜃𝜏 ) → trCl ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 )