Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1052.1 |
⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
2 |
|
bnj1052.2 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
3 |
|
bnj1052.3 |
⊢ ( 𝜒 ↔ ( 𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
4 |
|
bnj1052.4 |
⊢ ( 𝜃 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) |
5 |
|
bnj1052.5 |
⊢ ( 𝜏 ↔ ( 𝐵 ∈ V ∧ TrFo ( 𝐵 , 𝐴 , 𝑅 ) ∧ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) ) |
6 |
|
bnj1052.6 |
⊢ ( 𝜁 ↔ ( 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
7 |
|
bnj1052.7 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
8 |
|
bnj1052.8 |
⊢ 𝐾 = { 𝑓 ∣ ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) } |
9 |
|
bnj1052.9 |
⊢ ( 𝜂 ↔ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → 𝑧 ∈ 𝐵 ) ) |
10 |
|
bnj1052.10 |
⊢ ( 𝜌 ↔ ∀ 𝑗 ∈ 𝑛 ( 𝑗 E 𝑖 → [ 𝑗 / 𝑖 ] 𝜂 ) ) |
11 |
|
bnj1052.37 |
⊢ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → ( E Fr 𝑛 ∧ ∀ 𝑖 ∈ 𝑛 ( 𝜌 → 𝜂 ) ) ) |
12 |
|
19.23vv |
⊢ ( ∀ 𝑛 ∀ 𝑖 ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → 𝑧 ∈ 𝐵 ) ↔ ( ∃ 𝑛 ∃ 𝑖 ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → 𝑧 ∈ 𝐵 ) ) |
13 |
12
|
albii |
⊢ ( ∀ 𝑓 ∀ 𝑛 ∀ 𝑖 ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → 𝑧 ∈ 𝐵 ) ↔ ∀ 𝑓 ( ∃ 𝑛 ∃ 𝑖 ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → 𝑧 ∈ 𝐵 ) ) |
14 |
|
19.23v |
⊢ ( ∀ 𝑓 ( ∃ 𝑛 ∃ 𝑖 ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → 𝑧 ∈ 𝐵 ) ↔ ( ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → 𝑧 ∈ 𝐵 ) ) |
15 |
13 14
|
bitri |
⊢ ( ∀ 𝑓 ∀ 𝑛 ∀ 𝑖 ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → 𝑧 ∈ 𝐵 ) ↔ ( ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → 𝑧 ∈ 𝐵 ) ) |
16 |
|
vex |
⊢ 𝑛 ∈ V |
17 |
16 10
|
bnj110 |
⊢ ( ( E Fr 𝑛 ∧ ∀ 𝑖 ∈ 𝑛 ( 𝜌 → 𝜂 ) ) → ∀ 𝑖 ∈ 𝑛 𝜂 ) |
18 |
6 9
|
bnj1049 |
⊢ ( ∀ 𝑖 ∈ 𝑛 𝜂 ↔ ∀ 𝑖 𝜂 ) |
19 |
17 18
|
sylib |
⊢ ( ( E Fr 𝑛 ∧ ∀ 𝑖 ∈ 𝑛 ( 𝜌 → 𝜂 ) ) → ∀ 𝑖 𝜂 ) |
20 |
19
|
19.21bi |
⊢ ( ( E Fr 𝑛 ∧ ∀ 𝑖 ∈ 𝑛 ( 𝜌 → 𝜂 ) ) → 𝜂 ) |
21 |
20 9
|
sylib |
⊢ ( ( E Fr 𝑛 ∧ ∀ 𝑖 ∈ 𝑛 ( 𝜌 → 𝜂 ) ) → ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → 𝑧 ∈ 𝐵 ) ) |
22 |
11 21
|
mpcom |
⊢ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → 𝑧 ∈ 𝐵 ) |
23 |
22
|
gen2 |
⊢ ∀ 𝑛 ∀ 𝑖 ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → 𝑧 ∈ 𝐵 ) |
24 |
15 23
|
mpgbi |
⊢ ( ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → 𝑧 ∈ 𝐵 ) |
25 |
1 2 3 4 5 6 7 8 24
|
bnj1034 |
⊢ ( ( 𝜃 ∧ 𝜏 ) → trCl ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) |