Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj1053.1 | ⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) | |
bnj1053.2 | ⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) | ||
bnj1053.3 | ⊢ ( 𝜒 ↔ ( 𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) | ||
bnj1053.4 | ⊢ ( 𝜃 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) | ||
bnj1053.5 | ⊢ ( 𝜏 ↔ ( 𝐵 ∈ V ∧ TrFo ( 𝐵 , 𝐴 , 𝑅 ) ∧ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) ) | ||
bnj1053.6 | ⊢ ( 𝜁 ↔ ( 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) | ||
bnj1053.7 | ⊢ 𝐷 = ( ω ∖ { ∅ } ) | ||
bnj1053.8 | ⊢ 𝐾 = { 𝑓 ∣ ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) } | ||
bnj1053.9 | ⊢ ( 𝜂 ↔ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → 𝑧 ∈ 𝐵 ) ) | ||
bnj1053.10 | ⊢ ( 𝜌 ↔ ∀ 𝑗 ∈ 𝑛 ( 𝑗 E 𝑖 → [ 𝑗 / 𝑖 ] 𝜂 ) ) | ||
bnj1053.37 | ⊢ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → ∀ 𝑖 ∈ 𝑛 ( 𝜌 → 𝜂 ) ) | ||
Assertion | bnj1053 | ⊢ ( ( 𝜃 ∧ 𝜏 ) → trCl ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1053.1 | ⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) | |
2 | bnj1053.2 | ⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) | |
3 | bnj1053.3 | ⊢ ( 𝜒 ↔ ( 𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) | |
4 | bnj1053.4 | ⊢ ( 𝜃 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) | |
5 | bnj1053.5 | ⊢ ( 𝜏 ↔ ( 𝐵 ∈ V ∧ TrFo ( 𝐵 , 𝐴 , 𝑅 ) ∧ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) ) | |
6 | bnj1053.6 | ⊢ ( 𝜁 ↔ ( 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) | |
7 | bnj1053.7 | ⊢ 𝐷 = ( ω ∖ { ∅ } ) | |
8 | bnj1053.8 | ⊢ 𝐾 = { 𝑓 ∣ ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) } | |
9 | bnj1053.9 | ⊢ ( 𝜂 ↔ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → 𝑧 ∈ 𝐵 ) ) | |
10 | bnj1053.10 | ⊢ ( 𝜌 ↔ ∀ 𝑗 ∈ 𝑛 ( 𝑗 E 𝑖 → [ 𝑗 / 𝑖 ] 𝜂 ) ) | |
11 | bnj1053.37 | ⊢ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → ∀ 𝑖 ∈ 𝑛 ( 𝜌 → 𝜂 ) ) | |
12 | 7 | bnj923 | ⊢ ( 𝑛 ∈ 𝐷 → 𝑛 ∈ ω ) |
13 | nnord | ⊢ ( 𝑛 ∈ ω → Ord 𝑛 ) | |
14 | ordfr | ⊢ ( Ord 𝑛 → E Fr 𝑛 ) | |
15 | 12 13 14 | 3syl | ⊢ ( 𝑛 ∈ 𝐷 → E Fr 𝑛 ) |
16 | 3 15 | bnj769 | ⊢ ( 𝜒 → E Fr 𝑛 ) |
17 | 16 | bnj707 | ⊢ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → E Fr 𝑛 ) |
18 | 17 11 | jca | ⊢ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → ( E Fr 𝑛 ∧ ∀ 𝑖 ∈ 𝑛 ( 𝜌 → 𝜂 ) ) ) |
19 | 1 2 3 4 5 6 7 8 9 10 18 | bnj1052 | ⊢ ( ( 𝜃 ∧ 𝜏 ) → trCl ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) |