Metamath Proof Explorer


Theorem bnj1053

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1053.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
bnj1053.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
bnj1053.3 ( 𝜒 ↔ ( 𝑛𝐷𝑓 Fn 𝑛𝜑𝜓 ) )
bnj1053.4 ( 𝜃 ↔ ( 𝑅 FrSe 𝐴𝑋𝐴 ) )
bnj1053.5 ( 𝜏 ↔ ( 𝐵 ∈ V ∧ TrFo ( 𝐵 , 𝐴 , 𝑅 ) ∧ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) )
bnj1053.6 ( 𝜁 ↔ ( 𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) )
bnj1053.7 𝐷 = ( ω ∖ { ∅ } )
bnj1053.8 𝐾 = { 𝑓 ∣ ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) }
bnj1053.9 ( 𝜂 ↔ ( ( 𝜃𝜏𝜒𝜁 ) → 𝑧𝐵 ) )
bnj1053.10 ( 𝜌 ↔ ∀ 𝑗𝑛 ( 𝑗 E 𝑖[ 𝑗 / 𝑖 ] 𝜂 ) )
bnj1053.37 ( ( 𝜃𝜏𝜒𝜁 ) → ∀ 𝑖𝑛 ( 𝜌𝜂 ) )
Assertion bnj1053 ( ( 𝜃𝜏 ) → trCl ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 )

Proof

Step Hyp Ref Expression
1 bnj1053.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
2 bnj1053.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
3 bnj1053.3 ( 𝜒 ↔ ( 𝑛𝐷𝑓 Fn 𝑛𝜑𝜓 ) )
4 bnj1053.4 ( 𝜃 ↔ ( 𝑅 FrSe 𝐴𝑋𝐴 ) )
5 bnj1053.5 ( 𝜏 ↔ ( 𝐵 ∈ V ∧ TrFo ( 𝐵 , 𝐴 , 𝑅 ) ∧ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) )
6 bnj1053.6 ( 𝜁 ↔ ( 𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) )
7 bnj1053.7 𝐷 = ( ω ∖ { ∅ } )
8 bnj1053.8 𝐾 = { 𝑓 ∣ ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) }
9 bnj1053.9 ( 𝜂 ↔ ( ( 𝜃𝜏𝜒𝜁 ) → 𝑧𝐵 ) )
10 bnj1053.10 ( 𝜌 ↔ ∀ 𝑗𝑛 ( 𝑗 E 𝑖[ 𝑗 / 𝑖 ] 𝜂 ) )
11 bnj1053.37 ( ( 𝜃𝜏𝜒𝜁 ) → ∀ 𝑖𝑛 ( 𝜌𝜂 ) )
12 7 bnj923 ( 𝑛𝐷𝑛 ∈ ω )
13 nnord ( 𝑛 ∈ ω → Ord 𝑛 )
14 ordfr ( Ord 𝑛 → E Fr 𝑛 )
15 12 13 14 3syl ( 𝑛𝐷 → E Fr 𝑛 )
16 3 15 bnj769 ( 𝜒 → E Fr 𝑛 )
17 16 bnj707 ( ( 𝜃𝜏𝜒𝜁 ) → E Fr 𝑛 )
18 17 11 jca ( ( 𝜃𝜏𝜒𝜁 ) → ( E Fr 𝑛 ∧ ∀ 𝑖𝑛 ( 𝜌𝜂 ) ) )
19 1 2 3 4 5 6 7 8 9 10 18 bnj1052 ( ( 𝜃𝜏 ) → trCl ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 )