| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj106.1 | 
							⊢ ( 𝜓  ↔  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bnj106.2 | 
							⊢ 𝐹  ∈  V  | 
						
						
							| 3 | 
							
								
							 | 
							bnj105 | 
							⊢ 1o  ∈  V  | 
						
						
							| 4 | 
							
								1 3
							 | 
							bnj92 | 
							⊢ ( [ 1o  /  𝑛 ] 𝜓  ↔  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  1o  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							sbcbii | 
							⊢ ( [ 𝐹  /  𝑓 ] [ 1o  /  𝑛 ] 𝜓  ↔  [ 𝐹  /  𝑓 ] ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  1o  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							fveq1 | 
							⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ suc  𝑖 )  =  ( 𝐹 ‘ suc  𝑖 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							fveq1 | 
							⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ 𝑖 )  =  ( 𝐹 ‘ 𝑖 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							bnj1113 | 
							⊢ ( 𝑓  =  𝐹  →  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 )  =  ∪  𝑦  ∈  ( 𝐹 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 9 | 
							
								6 8
							 | 
							eqeq12d | 
							⊢ ( 𝑓  =  𝐹  →  ( ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 )  ↔  ( 𝐹 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝐹 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							imbi2d | 
							⊢ ( 𝑓  =  𝐹  →  ( ( suc  𝑖  ∈  1o  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  ↔  ( suc  𝑖  ∈  1o  →  ( 𝐹 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝐹 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							ralbidv | 
							⊢ ( 𝑓  =  𝐹  →  ( ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  1o  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  ↔  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  1o  →  ( 𝐹 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝐹 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) )  | 
						
						
							| 12 | 
							
								2 11
							 | 
							sbcie | 
							⊢ ( [ 𝐹  /  𝑓 ] ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  1o  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  ↔  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  1o  →  ( 𝐹 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝐹 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 13 | 
							
								5 12
							 | 
							bitri | 
							⊢ ( [ 𝐹  /  𝑓 ] [ 1o  /  𝑛 ] 𝜓  ↔  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  1o  →  ( 𝐹 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝐹 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  |