Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1090.9 |
⊢ ( 𝜂 ↔ ( ( 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) ) |
2 |
|
bnj1090.10 |
⊢ ( 𝜌 ↔ ∀ 𝑗 ∈ 𝑛 ( 𝑗 E 𝑖 → [ 𝑗 / 𝑖 ] 𝜂 ) ) |
3 |
|
bnj1090.17 |
⊢ ( 𝜂′ ↔ [ 𝑗 / 𝑖 ] 𝜂 ) |
4 |
|
bnj1090.18 |
⊢ ( 𝜎 ↔ ( ( 𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖 ) → 𝜂′ ) ) |
5 |
|
bnj1090.19 |
⊢ ( 𝜑0 ↔ ( 𝑖 ∈ 𝑛 ∧ 𝜎 ∧ 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓 ) ) |
6 |
|
bnj1090.28 |
⊢ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → ∀ 𝑖 ∃ 𝑗 ( 𝜑0 → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) ) |
7 |
|
impexp |
⊢ ( ( ( 𝑖 ∈ 𝑛 ∧ 𝜎 ) → 𝜂 ) ↔ ( 𝑖 ∈ 𝑛 → ( 𝜎 → 𝜂 ) ) ) |
8 |
7
|
exbii |
⊢ ( ∃ 𝑗 ( ( 𝑖 ∈ 𝑛 ∧ 𝜎 ) → 𝜂 ) ↔ ∃ 𝑗 ( 𝑖 ∈ 𝑛 → ( 𝜎 → 𝜂 ) ) ) |
9 |
4
|
imbi1i |
⊢ ( ( 𝜎 → 𝜂 ) ↔ ( ( ( 𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖 ) → 𝜂′ ) → 𝜂 ) ) |
10 |
9
|
exbii |
⊢ ( ∃ 𝑗 ( 𝜎 → 𝜂 ) ↔ ∃ 𝑗 ( ( ( 𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖 ) → 𝜂′ ) → 𝜂 ) ) |
11 |
10
|
imbi2i |
⊢ ( ( 𝑖 ∈ 𝑛 → ∃ 𝑗 ( 𝜎 → 𝜂 ) ) ↔ ( 𝑖 ∈ 𝑛 → ∃ 𝑗 ( ( ( 𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖 ) → 𝜂′ ) → 𝜂 ) ) ) |
12 |
|
19.37v |
⊢ ( ∃ 𝑗 ( 𝑖 ∈ 𝑛 → ( 𝜎 → 𝜂 ) ) ↔ ( 𝑖 ∈ 𝑛 → ∃ 𝑗 ( 𝜎 → 𝜂 ) ) ) |
13 |
2
|
bnj115 |
⊢ ( 𝜌 ↔ ∀ 𝑗 ( ( 𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖 ) → [ 𝑗 / 𝑖 ] 𝜂 ) ) |
14 |
3
|
imbi2i |
⊢ ( ( ( 𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖 ) → 𝜂′ ) ↔ ( ( 𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖 ) → [ 𝑗 / 𝑖 ] 𝜂 ) ) |
15 |
14
|
albii |
⊢ ( ∀ 𝑗 ( ( 𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖 ) → 𝜂′ ) ↔ ∀ 𝑗 ( ( 𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖 ) → [ 𝑗 / 𝑖 ] 𝜂 ) ) |
16 |
13 15
|
bitr4i |
⊢ ( 𝜌 ↔ ∀ 𝑗 ( ( 𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖 ) → 𝜂′ ) ) |
17 |
16
|
imbi1i |
⊢ ( ( 𝜌 → 𝜂 ) ↔ ( ∀ 𝑗 ( ( 𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖 ) → 𝜂′ ) → 𝜂 ) ) |
18 |
|
19.36v |
⊢ ( ∃ 𝑗 ( ( ( 𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖 ) → 𝜂′ ) → 𝜂 ) ↔ ( ∀ 𝑗 ( ( 𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖 ) → 𝜂′ ) → 𝜂 ) ) |
19 |
17 18
|
bitr4i |
⊢ ( ( 𝜌 → 𝜂 ) ↔ ∃ 𝑗 ( ( ( 𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖 ) → 𝜂′ ) → 𝜂 ) ) |
20 |
19
|
imbi2i |
⊢ ( ( 𝑖 ∈ 𝑛 → ( 𝜌 → 𝜂 ) ) ↔ ( 𝑖 ∈ 𝑛 → ∃ 𝑗 ( ( ( 𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖 ) → 𝜂′ ) → 𝜂 ) ) ) |
21 |
11 12 20
|
3bitr4i |
⊢ ( ∃ 𝑗 ( 𝑖 ∈ 𝑛 → ( 𝜎 → 𝜂 ) ) ↔ ( 𝑖 ∈ 𝑛 → ( 𝜌 → 𝜂 ) ) ) |
22 |
8 21
|
bitr2i |
⊢ ( ( 𝑖 ∈ 𝑛 → ( 𝜌 → 𝜂 ) ) ↔ ∃ 𝑗 ( ( 𝑖 ∈ 𝑛 ∧ 𝜎 ) → 𝜂 ) ) |
23 |
|
impexp |
⊢ ( ( ( ( 𝑖 ∈ 𝑛 ∧ 𝜎 ) ∧ ( 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓 ) ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) ↔ ( ( 𝑖 ∈ 𝑛 ∧ 𝜎 ) → ( ( 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) ) ) |
24 |
|
bnj256 |
⊢ ( ( 𝑖 ∈ 𝑛 ∧ 𝜎 ∧ 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓 ) ↔ ( ( 𝑖 ∈ 𝑛 ∧ 𝜎 ) ∧ ( 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓 ) ) ) |
25 |
24
|
imbi1i |
⊢ ( ( ( 𝑖 ∈ 𝑛 ∧ 𝜎 ∧ 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) ↔ ( ( ( 𝑖 ∈ 𝑛 ∧ 𝜎 ) ∧ ( 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓 ) ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) ) |
26 |
1
|
imbi2i |
⊢ ( ( ( 𝑖 ∈ 𝑛 ∧ 𝜎 ) → 𝜂 ) ↔ ( ( 𝑖 ∈ 𝑛 ∧ 𝜎 ) → ( ( 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) ) ) |
27 |
23 25 26
|
3bitr4i |
⊢ ( ( ( 𝑖 ∈ 𝑛 ∧ 𝜎 ∧ 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) ↔ ( ( 𝑖 ∈ 𝑛 ∧ 𝜎 ) → 𝜂 ) ) |
28 |
22 27
|
bnj133 |
⊢ ( ( 𝑖 ∈ 𝑛 → ( 𝜌 → 𝜂 ) ) ↔ ∃ 𝑗 ( ( 𝑖 ∈ 𝑛 ∧ 𝜎 ∧ 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) ) |
29 |
28
|
albii |
⊢ ( ∀ 𝑖 ( 𝑖 ∈ 𝑛 → ( 𝜌 → 𝜂 ) ) ↔ ∀ 𝑖 ∃ 𝑗 ( ( 𝑖 ∈ 𝑛 ∧ 𝜎 ∧ 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) ) |
30 |
|
df-ral |
⊢ ( ∀ 𝑖 ∈ 𝑛 ( 𝜌 → 𝜂 ) ↔ ∀ 𝑖 ( 𝑖 ∈ 𝑛 → ( 𝜌 → 𝜂 ) ) ) |
31 |
5
|
imbi1i |
⊢ ( ( 𝜑0 → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) ↔ ( ( 𝑖 ∈ 𝑛 ∧ 𝜎 ∧ 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) ) |
32 |
31
|
exbii |
⊢ ( ∃ 𝑗 ( 𝜑0 → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) ↔ ∃ 𝑗 ( ( 𝑖 ∈ 𝑛 ∧ 𝜎 ∧ 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) ) |
33 |
32
|
albii |
⊢ ( ∀ 𝑖 ∃ 𝑗 ( 𝜑0 → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) ↔ ∀ 𝑖 ∃ 𝑗 ( ( 𝑖 ∈ 𝑛 ∧ 𝜎 ∧ 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) ) |
34 |
29 30 33
|
3bitr4i |
⊢ ( ∀ 𝑖 ∈ 𝑛 ( 𝜌 → 𝜂 ) ↔ ∀ 𝑖 ∃ 𝑗 ( 𝜑0 → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) ) |
35 |
6 34
|
sylibr |
⊢ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → ∀ 𝑖 ∈ 𝑛 ( 𝜌 → 𝜂 ) ) |