| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1090.9 | 
							⊢ ( 𝜂  ↔  ( ( 𝑓  ∈  𝐾  ∧  𝑖  ∈  dom  𝑓 )  →  ( 𝑓 ‘ 𝑖 )  ⊆  𝐵 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bnj1090.10 | 
							⊢ ( 𝜌  ↔  ∀ 𝑗  ∈  𝑛 ( 𝑗  E  𝑖  →  [ 𝑗  /  𝑖 ] 𝜂 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							bnj1090.17 | 
							⊢ ( 𝜂′  ↔  [ 𝑗  /  𝑖 ] 𝜂 )  | 
						
						
							| 4 | 
							
								
							 | 
							bnj1090.18 | 
							⊢ ( 𝜎  ↔  ( ( 𝑗  ∈  𝑛  ∧  𝑗  E  𝑖 )  →  𝜂′ ) )  | 
						
						
							| 5 | 
							
								
							 | 
							bnj1090.19 | 
							⊢ ( 𝜑0  ↔  ( 𝑖  ∈  𝑛  ∧  𝜎  ∧  𝑓  ∈  𝐾  ∧  𝑖  ∈  dom  𝑓 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							bnj1090.28 | 
							⊢ ( ( 𝜃  ∧  𝜏  ∧  𝜒  ∧  𝜁 )  →  ∀ 𝑖 ∃ 𝑗 ( 𝜑0  →  ( 𝑓 ‘ 𝑖 )  ⊆  𝐵 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							impexp | 
							⊢ ( ( ( 𝑖  ∈  𝑛  ∧  𝜎 )  →  𝜂 )  ↔  ( 𝑖  ∈  𝑛  →  ( 𝜎  →  𝜂 ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							exbii | 
							⊢ ( ∃ 𝑗 ( ( 𝑖  ∈  𝑛  ∧  𝜎 )  →  𝜂 )  ↔  ∃ 𝑗 ( 𝑖  ∈  𝑛  →  ( 𝜎  →  𝜂 ) ) )  | 
						
						
							| 9 | 
							
								4
							 | 
							imbi1i | 
							⊢ ( ( 𝜎  →  𝜂 )  ↔  ( ( ( 𝑗  ∈  𝑛  ∧  𝑗  E  𝑖 )  →  𝜂′ )  →  𝜂 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							exbii | 
							⊢ ( ∃ 𝑗 ( 𝜎  →  𝜂 )  ↔  ∃ 𝑗 ( ( ( 𝑗  ∈  𝑛  ∧  𝑗  E  𝑖 )  →  𝜂′ )  →  𝜂 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							imbi2i | 
							⊢ ( ( 𝑖  ∈  𝑛  →  ∃ 𝑗 ( 𝜎  →  𝜂 ) )  ↔  ( 𝑖  ∈  𝑛  →  ∃ 𝑗 ( ( ( 𝑗  ∈  𝑛  ∧  𝑗  E  𝑖 )  →  𝜂′ )  →  𝜂 ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							19.37v | 
							⊢ ( ∃ 𝑗 ( 𝑖  ∈  𝑛  →  ( 𝜎  →  𝜂 ) )  ↔  ( 𝑖  ∈  𝑛  →  ∃ 𝑗 ( 𝜎  →  𝜂 ) ) )  | 
						
						
							| 13 | 
							
								2
							 | 
							bnj115 | 
							⊢ ( 𝜌  ↔  ∀ 𝑗 ( ( 𝑗  ∈  𝑛  ∧  𝑗  E  𝑖 )  →  [ 𝑗  /  𝑖 ] 𝜂 ) )  | 
						
						
							| 14 | 
							
								3
							 | 
							imbi2i | 
							⊢ ( ( ( 𝑗  ∈  𝑛  ∧  𝑗  E  𝑖 )  →  𝜂′ )  ↔  ( ( 𝑗  ∈  𝑛  ∧  𝑗  E  𝑖 )  →  [ 𝑗  /  𝑖 ] 𝜂 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							albii | 
							⊢ ( ∀ 𝑗 ( ( 𝑗  ∈  𝑛  ∧  𝑗  E  𝑖 )  →  𝜂′ )  ↔  ∀ 𝑗 ( ( 𝑗  ∈  𝑛  ∧  𝑗  E  𝑖 )  →  [ 𝑗  /  𝑖 ] 𝜂 ) )  | 
						
						
							| 16 | 
							
								13 15
							 | 
							bitr4i | 
							⊢ ( 𝜌  ↔  ∀ 𝑗 ( ( 𝑗  ∈  𝑛  ∧  𝑗  E  𝑖 )  →  𝜂′ ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							imbi1i | 
							⊢ ( ( 𝜌  →  𝜂 )  ↔  ( ∀ 𝑗 ( ( 𝑗  ∈  𝑛  ∧  𝑗  E  𝑖 )  →  𝜂′ )  →  𝜂 ) )  | 
						
						
							| 18 | 
							
								
							 | 
							19.36v | 
							⊢ ( ∃ 𝑗 ( ( ( 𝑗  ∈  𝑛  ∧  𝑗  E  𝑖 )  →  𝜂′ )  →  𝜂 )  ↔  ( ∀ 𝑗 ( ( 𝑗  ∈  𝑛  ∧  𝑗  E  𝑖 )  →  𝜂′ )  →  𝜂 ) )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							bitr4i | 
							⊢ ( ( 𝜌  →  𝜂 )  ↔  ∃ 𝑗 ( ( ( 𝑗  ∈  𝑛  ∧  𝑗  E  𝑖 )  →  𝜂′ )  →  𝜂 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							imbi2i | 
							⊢ ( ( 𝑖  ∈  𝑛  →  ( 𝜌  →  𝜂 ) )  ↔  ( 𝑖  ∈  𝑛  →  ∃ 𝑗 ( ( ( 𝑗  ∈  𝑛  ∧  𝑗  E  𝑖 )  →  𝜂′ )  →  𝜂 ) ) )  | 
						
						
							| 21 | 
							
								11 12 20
							 | 
							3bitr4i | 
							⊢ ( ∃ 𝑗 ( 𝑖  ∈  𝑛  →  ( 𝜎  →  𝜂 ) )  ↔  ( 𝑖  ∈  𝑛  →  ( 𝜌  →  𝜂 ) ) )  | 
						
						
							| 22 | 
							
								8 21
							 | 
							bitr2i | 
							⊢ ( ( 𝑖  ∈  𝑛  →  ( 𝜌  →  𝜂 ) )  ↔  ∃ 𝑗 ( ( 𝑖  ∈  𝑛  ∧  𝜎 )  →  𝜂 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							impexp | 
							⊢ ( ( ( ( 𝑖  ∈  𝑛  ∧  𝜎 )  ∧  ( 𝑓  ∈  𝐾  ∧  𝑖  ∈  dom  𝑓 ) )  →  ( 𝑓 ‘ 𝑖 )  ⊆  𝐵 )  ↔  ( ( 𝑖  ∈  𝑛  ∧  𝜎 )  →  ( ( 𝑓  ∈  𝐾  ∧  𝑖  ∈  dom  𝑓 )  →  ( 𝑓 ‘ 𝑖 )  ⊆  𝐵 ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							bnj256 | 
							⊢ ( ( 𝑖  ∈  𝑛  ∧  𝜎  ∧  𝑓  ∈  𝐾  ∧  𝑖  ∈  dom  𝑓 )  ↔  ( ( 𝑖  ∈  𝑛  ∧  𝜎 )  ∧  ( 𝑓  ∈  𝐾  ∧  𝑖  ∈  dom  𝑓 ) ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							imbi1i | 
							⊢ ( ( ( 𝑖  ∈  𝑛  ∧  𝜎  ∧  𝑓  ∈  𝐾  ∧  𝑖  ∈  dom  𝑓 )  →  ( 𝑓 ‘ 𝑖 )  ⊆  𝐵 )  ↔  ( ( ( 𝑖  ∈  𝑛  ∧  𝜎 )  ∧  ( 𝑓  ∈  𝐾  ∧  𝑖  ∈  dom  𝑓 ) )  →  ( 𝑓 ‘ 𝑖 )  ⊆  𝐵 ) )  | 
						
						
							| 26 | 
							
								1
							 | 
							imbi2i | 
							⊢ ( ( ( 𝑖  ∈  𝑛  ∧  𝜎 )  →  𝜂 )  ↔  ( ( 𝑖  ∈  𝑛  ∧  𝜎 )  →  ( ( 𝑓  ∈  𝐾  ∧  𝑖  ∈  dom  𝑓 )  →  ( 𝑓 ‘ 𝑖 )  ⊆  𝐵 ) ) )  | 
						
						
							| 27 | 
							
								23 25 26
							 | 
							3bitr4i | 
							⊢ ( ( ( 𝑖  ∈  𝑛  ∧  𝜎  ∧  𝑓  ∈  𝐾  ∧  𝑖  ∈  dom  𝑓 )  →  ( 𝑓 ‘ 𝑖 )  ⊆  𝐵 )  ↔  ( ( 𝑖  ∈  𝑛  ∧  𝜎 )  →  𝜂 ) )  | 
						
						
							| 28 | 
							
								22 27
							 | 
							bnj133 | 
							⊢ ( ( 𝑖  ∈  𝑛  →  ( 𝜌  →  𝜂 ) )  ↔  ∃ 𝑗 ( ( 𝑖  ∈  𝑛  ∧  𝜎  ∧  𝑓  ∈  𝐾  ∧  𝑖  ∈  dom  𝑓 )  →  ( 𝑓 ‘ 𝑖 )  ⊆  𝐵 ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							albii | 
							⊢ ( ∀ 𝑖 ( 𝑖  ∈  𝑛  →  ( 𝜌  →  𝜂 ) )  ↔  ∀ 𝑖 ∃ 𝑗 ( ( 𝑖  ∈  𝑛  ∧  𝜎  ∧  𝑓  ∈  𝐾  ∧  𝑖  ∈  dom  𝑓 )  →  ( 𝑓 ‘ 𝑖 )  ⊆  𝐵 ) )  | 
						
						
							| 30 | 
							
								
							 | 
							df-ral | 
							⊢ ( ∀ 𝑖  ∈  𝑛 ( 𝜌  →  𝜂 )  ↔  ∀ 𝑖 ( 𝑖  ∈  𝑛  →  ( 𝜌  →  𝜂 ) ) )  | 
						
						
							| 31 | 
							
								5
							 | 
							imbi1i | 
							⊢ ( ( 𝜑0  →  ( 𝑓 ‘ 𝑖 )  ⊆  𝐵 )  ↔  ( ( 𝑖  ∈  𝑛  ∧  𝜎  ∧  𝑓  ∈  𝐾  ∧  𝑖  ∈  dom  𝑓 )  →  ( 𝑓 ‘ 𝑖 )  ⊆  𝐵 ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							exbii | 
							⊢ ( ∃ 𝑗 ( 𝜑0  →  ( 𝑓 ‘ 𝑖 )  ⊆  𝐵 )  ↔  ∃ 𝑗 ( ( 𝑖  ∈  𝑛  ∧  𝜎  ∧  𝑓  ∈  𝐾  ∧  𝑖  ∈  dom  𝑓 )  →  ( 𝑓 ‘ 𝑖 )  ⊆  𝐵 ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							albii | 
							⊢ ( ∀ 𝑖 ∃ 𝑗 ( 𝜑0  →  ( 𝑓 ‘ 𝑖 )  ⊆  𝐵 )  ↔  ∀ 𝑖 ∃ 𝑗 ( ( 𝑖  ∈  𝑛  ∧  𝜎  ∧  𝑓  ∈  𝐾  ∧  𝑖  ∈  dom  𝑓 )  →  ( 𝑓 ‘ 𝑖 )  ⊆  𝐵 ) )  | 
						
						
							| 34 | 
							
								29 30 33
							 | 
							3bitr4i | 
							⊢ ( ∀ 𝑖  ∈  𝑛 ( 𝜌  →  𝜂 )  ↔  ∀ 𝑖 ∃ 𝑗 ( 𝜑0  →  ( 𝑓 ‘ 𝑖 )  ⊆  𝐵 ) )  | 
						
						
							| 35 | 
							
								6 34
							 | 
							sylibr | 
							⊢ ( ( 𝜃  ∧  𝜏  ∧  𝜒  ∧  𝜁 )  →  ∀ 𝑖  ∈  𝑛 ( 𝜌  →  𝜂 ) )  |