Metamath Proof Explorer


Theorem bnj1090

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1090.9 ( 𝜂 ↔ ( ( 𝑓𝐾𝑖 ∈ dom 𝑓 ) → ( 𝑓𝑖 ) ⊆ 𝐵 ) )
bnj1090.10 ( 𝜌 ↔ ∀ 𝑗𝑛 ( 𝑗 E 𝑖[ 𝑗 / 𝑖 ] 𝜂 ) )
bnj1090.17 ( 𝜂′[ 𝑗 / 𝑖 ] 𝜂 )
bnj1090.18 ( 𝜎 ↔ ( ( 𝑗𝑛𝑗 E 𝑖 ) → 𝜂′ ) )
bnj1090.19 ( 𝜑0 ↔ ( 𝑖𝑛𝜎𝑓𝐾𝑖 ∈ dom 𝑓 ) )
bnj1090.28 ( ( 𝜃𝜏𝜒𝜁 ) → ∀ 𝑖𝑗 ( 𝜑0 → ( 𝑓𝑖 ) ⊆ 𝐵 ) )
Assertion bnj1090 ( ( 𝜃𝜏𝜒𝜁 ) → ∀ 𝑖𝑛 ( 𝜌𝜂 ) )

Proof

Step Hyp Ref Expression
1 bnj1090.9 ( 𝜂 ↔ ( ( 𝑓𝐾𝑖 ∈ dom 𝑓 ) → ( 𝑓𝑖 ) ⊆ 𝐵 ) )
2 bnj1090.10 ( 𝜌 ↔ ∀ 𝑗𝑛 ( 𝑗 E 𝑖[ 𝑗 / 𝑖 ] 𝜂 ) )
3 bnj1090.17 ( 𝜂′[ 𝑗 / 𝑖 ] 𝜂 )
4 bnj1090.18 ( 𝜎 ↔ ( ( 𝑗𝑛𝑗 E 𝑖 ) → 𝜂′ ) )
5 bnj1090.19 ( 𝜑0 ↔ ( 𝑖𝑛𝜎𝑓𝐾𝑖 ∈ dom 𝑓 ) )
6 bnj1090.28 ( ( 𝜃𝜏𝜒𝜁 ) → ∀ 𝑖𝑗 ( 𝜑0 → ( 𝑓𝑖 ) ⊆ 𝐵 ) )
7 impexp ( ( ( 𝑖𝑛𝜎 ) → 𝜂 ) ↔ ( 𝑖𝑛 → ( 𝜎𝜂 ) ) )
8 7 exbii ( ∃ 𝑗 ( ( 𝑖𝑛𝜎 ) → 𝜂 ) ↔ ∃ 𝑗 ( 𝑖𝑛 → ( 𝜎𝜂 ) ) )
9 4 imbi1i ( ( 𝜎𝜂 ) ↔ ( ( ( 𝑗𝑛𝑗 E 𝑖 ) → 𝜂′ ) → 𝜂 ) )
10 9 exbii ( ∃ 𝑗 ( 𝜎𝜂 ) ↔ ∃ 𝑗 ( ( ( 𝑗𝑛𝑗 E 𝑖 ) → 𝜂′ ) → 𝜂 ) )
11 10 imbi2i ( ( 𝑖𝑛 → ∃ 𝑗 ( 𝜎𝜂 ) ) ↔ ( 𝑖𝑛 → ∃ 𝑗 ( ( ( 𝑗𝑛𝑗 E 𝑖 ) → 𝜂′ ) → 𝜂 ) ) )
12 19.37v ( ∃ 𝑗 ( 𝑖𝑛 → ( 𝜎𝜂 ) ) ↔ ( 𝑖𝑛 → ∃ 𝑗 ( 𝜎𝜂 ) ) )
13 2 bnj115 ( 𝜌 ↔ ∀ 𝑗 ( ( 𝑗𝑛𝑗 E 𝑖 ) → [ 𝑗 / 𝑖 ] 𝜂 ) )
14 3 imbi2i ( ( ( 𝑗𝑛𝑗 E 𝑖 ) → 𝜂′ ) ↔ ( ( 𝑗𝑛𝑗 E 𝑖 ) → [ 𝑗 / 𝑖 ] 𝜂 ) )
15 14 albii ( ∀ 𝑗 ( ( 𝑗𝑛𝑗 E 𝑖 ) → 𝜂′ ) ↔ ∀ 𝑗 ( ( 𝑗𝑛𝑗 E 𝑖 ) → [ 𝑗 / 𝑖 ] 𝜂 ) )
16 13 15 bitr4i ( 𝜌 ↔ ∀ 𝑗 ( ( 𝑗𝑛𝑗 E 𝑖 ) → 𝜂′ ) )
17 16 imbi1i ( ( 𝜌𝜂 ) ↔ ( ∀ 𝑗 ( ( 𝑗𝑛𝑗 E 𝑖 ) → 𝜂′ ) → 𝜂 ) )
18 19.36v ( ∃ 𝑗 ( ( ( 𝑗𝑛𝑗 E 𝑖 ) → 𝜂′ ) → 𝜂 ) ↔ ( ∀ 𝑗 ( ( 𝑗𝑛𝑗 E 𝑖 ) → 𝜂′ ) → 𝜂 ) )
19 17 18 bitr4i ( ( 𝜌𝜂 ) ↔ ∃ 𝑗 ( ( ( 𝑗𝑛𝑗 E 𝑖 ) → 𝜂′ ) → 𝜂 ) )
20 19 imbi2i ( ( 𝑖𝑛 → ( 𝜌𝜂 ) ) ↔ ( 𝑖𝑛 → ∃ 𝑗 ( ( ( 𝑗𝑛𝑗 E 𝑖 ) → 𝜂′ ) → 𝜂 ) ) )
21 11 12 20 3bitr4i ( ∃ 𝑗 ( 𝑖𝑛 → ( 𝜎𝜂 ) ) ↔ ( 𝑖𝑛 → ( 𝜌𝜂 ) ) )
22 8 21 bitr2i ( ( 𝑖𝑛 → ( 𝜌𝜂 ) ) ↔ ∃ 𝑗 ( ( 𝑖𝑛𝜎 ) → 𝜂 ) )
23 impexp ( ( ( ( 𝑖𝑛𝜎 ) ∧ ( 𝑓𝐾𝑖 ∈ dom 𝑓 ) ) → ( 𝑓𝑖 ) ⊆ 𝐵 ) ↔ ( ( 𝑖𝑛𝜎 ) → ( ( 𝑓𝐾𝑖 ∈ dom 𝑓 ) → ( 𝑓𝑖 ) ⊆ 𝐵 ) ) )
24 bnj256 ( ( 𝑖𝑛𝜎𝑓𝐾𝑖 ∈ dom 𝑓 ) ↔ ( ( 𝑖𝑛𝜎 ) ∧ ( 𝑓𝐾𝑖 ∈ dom 𝑓 ) ) )
25 24 imbi1i ( ( ( 𝑖𝑛𝜎𝑓𝐾𝑖 ∈ dom 𝑓 ) → ( 𝑓𝑖 ) ⊆ 𝐵 ) ↔ ( ( ( 𝑖𝑛𝜎 ) ∧ ( 𝑓𝐾𝑖 ∈ dom 𝑓 ) ) → ( 𝑓𝑖 ) ⊆ 𝐵 ) )
26 1 imbi2i ( ( ( 𝑖𝑛𝜎 ) → 𝜂 ) ↔ ( ( 𝑖𝑛𝜎 ) → ( ( 𝑓𝐾𝑖 ∈ dom 𝑓 ) → ( 𝑓𝑖 ) ⊆ 𝐵 ) ) )
27 23 25 26 3bitr4i ( ( ( 𝑖𝑛𝜎𝑓𝐾𝑖 ∈ dom 𝑓 ) → ( 𝑓𝑖 ) ⊆ 𝐵 ) ↔ ( ( 𝑖𝑛𝜎 ) → 𝜂 ) )
28 22 27 bnj133 ( ( 𝑖𝑛 → ( 𝜌𝜂 ) ) ↔ ∃ 𝑗 ( ( 𝑖𝑛𝜎𝑓𝐾𝑖 ∈ dom 𝑓 ) → ( 𝑓𝑖 ) ⊆ 𝐵 ) )
29 28 albii ( ∀ 𝑖 ( 𝑖𝑛 → ( 𝜌𝜂 ) ) ↔ ∀ 𝑖𝑗 ( ( 𝑖𝑛𝜎𝑓𝐾𝑖 ∈ dom 𝑓 ) → ( 𝑓𝑖 ) ⊆ 𝐵 ) )
30 df-ral ( ∀ 𝑖𝑛 ( 𝜌𝜂 ) ↔ ∀ 𝑖 ( 𝑖𝑛 → ( 𝜌𝜂 ) ) )
31 5 imbi1i ( ( 𝜑0 → ( 𝑓𝑖 ) ⊆ 𝐵 ) ↔ ( ( 𝑖𝑛𝜎𝑓𝐾𝑖 ∈ dom 𝑓 ) → ( 𝑓𝑖 ) ⊆ 𝐵 ) )
32 31 exbii ( ∃ 𝑗 ( 𝜑0 → ( 𝑓𝑖 ) ⊆ 𝐵 ) ↔ ∃ 𝑗 ( ( 𝑖𝑛𝜎𝑓𝐾𝑖 ∈ dom 𝑓 ) → ( 𝑓𝑖 ) ⊆ 𝐵 ) )
33 32 albii ( ∀ 𝑖𝑗 ( 𝜑0 → ( 𝑓𝑖 ) ⊆ 𝐵 ) ↔ ∀ 𝑖𝑗 ( ( 𝑖𝑛𝜎𝑓𝐾𝑖 ∈ dom 𝑓 ) → ( 𝑓𝑖 ) ⊆ 𝐵 ) )
34 29 30 33 3bitr4i ( ∀ 𝑖𝑛 ( 𝜌𝜂 ) ↔ ∀ 𝑖𝑗 ( 𝜑0 → ( 𝑓𝑖 ) ⊆ 𝐵 ) )
35 6 34 sylibr ( ( 𝜃𝜏𝜒𝜁 ) → ∀ 𝑖𝑛 ( 𝜌𝜂 ) )