Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1093.1 |
⊢ ∃ 𝑗 ( ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) ∧ 𝜑0 ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) |
2 |
|
bnj1093.2 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
3 |
|
bnj1093.3 |
⊢ ( 𝜒 ↔ ( 𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
4 |
2
|
bnj1095 |
⊢ ( 𝜓 → ∀ 𝑖 𝜓 ) |
5 |
4 3
|
bnj1096 |
⊢ ( 𝜒 → ∀ 𝑖 𝜒 ) |
6 |
5
|
bnj1350 |
⊢ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) → ∀ 𝑖 ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) ) |
7 |
|
impexp |
⊢ ( ( ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) ∧ 𝜑0 ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) ↔ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) → ( 𝜑0 → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) ) ) |
8 |
7
|
exbii |
⊢ ( ∃ 𝑗 ( ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) ∧ 𝜑0 ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) ↔ ∃ 𝑗 ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) → ( 𝜑0 → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) ) ) |
9 |
1 8
|
mpbi |
⊢ ∃ 𝑗 ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) → ( 𝜑0 → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) ) |
10 |
9
|
19.37iv |
⊢ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) → ∃ 𝑗 ( 𝜑0 → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) ) |
11 |
6 10
|
alrimih |
⊢ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) → ∀ 𝑖 ∃ 𝑗 ( 𝜑0 → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) ) |
12 |
11
|
bnj721 |
⊢ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → ∀ 𝑖 ∃ 𝑗 ( 𝜑0 → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) ) |