| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1093.1 | 
							⊢ ∃ 𝑗 ( ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  ∧  𝜑0 )  →  ( 𝑓 ‘ 𝑖 )  ⊆  𝐵 )  | 
						
						
							| 2 | 
							
								
							 | 
							bnj1093.2 | 
							⊢ ( 𝜓  ↔  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							bnj1093.3 | 
							⊢ ( 𝜒  ↔  ( 𝑛  ∈  𝐷  ∧  𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) )  | 
						
						
							| 4 | 
							
								2
							 | 
							bnj1095 | 
							⊢ ( 𝜓  →  ∀ 𝑖 𝜓 )  | 
						
						
							| 5 | 
							
								4 3
							 | 
							bnj1096 | 
							⊢ ( 𝜒  →  ∀ 𝑖 𝜒 )  | 
						
						
							| 6 | 
							
								5
							 | 
							bnj1350 | 
							⊢ ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  →  ∀ 𝑖 ( 𝜃  ∧  𝜏  ∧  𝜒 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							impexp | 
							⊢ ( ( ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  ∧  𝜑0 )  →  ( 𝑓 ‘ 𝑖 )  ⊆  𝐵 )  ↔  ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  →  ( 𝜑0  →  ( 𝑓 ‘ 𝑖 )  ⊆  𝐵 ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							exbii | 
							⊢ ( ∃ 𝑗 ( ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  ∧  𝜑0 )  →  ( 𝑓 ‘ 𝑖 )  ⊆  𝐵 )  ↔  ∃ 𝑗 ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  →  ( 𝜑0  →  ( 𝑓 ‘ 𝑖 )  ⊆  𝐵 ) ) )  | 
						
						
							| 9 | 
							
								1 8
							 | 
							mpbi | 
							⊢ ∃ 𝑗 ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  →  ( 𝜑0  →  ( 𝑓 ‘ 𝑖 )  ⊆  𝐵 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							19.37iv | 
							⊢ ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  →  ∃ 𝑗 ( 𝜑0  →  ( 𝑓 ‘ 𝑖 )  ⊆  𝐵 ) )  | 
						
						
							| 11 | 
							
								6 10
							 | 
							alrimih | 
							⊢ ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  →  ∀ 𝑖 ∃ 𝑗 ( 𝜑0  →  ( 𝑓 ‘ 𝑖 )  ⊆  𝐵 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							bnj721 | 
							⊢ ( ( 𝜃  ∧  𝜏  ∧  𝜒  ∧  𝜁 )  →  ∀ 𝑖 ∃ 𝑗 ( 𝜑0  →  ( 𝑓 ‘ 𝑖 )  ⊆  𝐵 ) )  |