Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1098.1 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
2 |
|
3anrev |
⊢ ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) ↔ ( 𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛 ∧ 𝑖 ≠ ∅ ) ) |
3 |
|
df-3an |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛 ∧ 𝑖 ≠ ∅ ) ↔ ( ( 𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛 ) ∧ 𝑖 ≠ ∅ ) ) |
4 |
2 3
|
bitri |
⊢ ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) ↔ ( ( 𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛 ) ∧ 𝑖 ≠ ∅ ) ) |
5 |
|
simpr |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛 ) → 𝑖 ∈ 𝑛 ) |
6 |
1
|
bnj923 |
⊢ ( 𝑛 ∈ 𝐷 → 𝑛 ∈ ω ) |
7 |
6
|
adantr |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛 ) → 𝑛 ∈ ω ) |
8 |
|
elnn |
⊢ ( ( 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ ω ) → 𝑖 ∈ ω ) |
9 |
5 7 8
|
syl2anc |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛 ) → 𝑖 ∈ ω ) |
10 |
9
|
anim1i |
⊢ ( ( ( 𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛 ) ∧ 𝑖 ≠ ∅ ) → ( 𝑖 ∈ ω ∧ 𝑖 ≠ ∅ ) ) |
11 |
4 10
|
sylbi |
⊢ ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) → ( 𝑖 ∈ ω ∧ 𝑖 ≠ ∅ ) ) |
12 |
|
nnsuc |
⊢ ( ( 𝑖 ∈ ω ∧ 𝑖 ≠ ∅ ) → ∃ 𝑗 ∈ ω 𝑖 = suc 𝑗 ) |
13 |
11 12
|
syl |
⊢ ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) → ∃ 𝑗 ∈ ω 𝑖 = suc 𝑗 ) |
14 |
|
df-rex |
⊢ ( ∃ 𝑗 ∈ ω 𝑖 = suc 𝑗 ↔ ∃ 𝑗 ( 𝑗 ∈ ω ∧ 𝑖 = suc 𝑗 ) ) |
15 |
14
|
imbi2i |
⊢ ( ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) → ∃ 𝑗 ∈ ω 𝑖 = suc 𝑗 ) ↔ ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) → ∃ 𝑗 ( 𝑗 ∈ ω ∧ 𝑖 = suc 𝑗 ) ) ) |
16 |
|
19.37v |
⊢ ( ∃ 𝑗 ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) → ( 𝑗 ∈ ω ∧ 𝑖 = suc 𝑗 ) ) ↔ ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) → ∃ 𝑗 ( 𝑗 ∈ ω ∧ 𝑖 = suc 𝑗 ) ) ) |
17 |
15 16
|
bitr4i |
⊢ ( ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) → ∃ 𝑗 ∈ ω 𝑖 = suc 𝑗 ) ↔ ∃ 𝑗 ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) → ( 𝑗 ∈ ω ∧ 𝑖 = suc 𝑗 ) ) ) |
18 |
13 17
|
mpbi |
⊢ ∃ 𝑗 ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) → ( 𝑗 ∈ ω ∧ 𝑖 = suc 𝑗 ) ) |
19 |
|
ancr |
⊢ ( ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) → ( 𝑗 ∈ ω ∧ 𝑖 = suc 𝑗 ) ) → ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) → ( ( 𝑗 ∈ ω ∧ 𝑖 = suc 𝑗 ) ∧ ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) ) ) ) |
20 |
18 19
|
bnj101 |
⊢ ∃ 𝑗 ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) → ( ( 𝑗 ∈ ω ∧ 𝑖 = suc 𝑗 ) ∧ ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) ) ) |
21 |
|
vex |
⊢ 𝑗 ∈ V |
22 |
21
|
bnj216 |
⊢ ( 𝑖 = suc 𝑗 → 𝑗 ∈ 𝑖 ) |
23 |
22
|
ad2antlr |
⊢ ( ( ( 𝑗 ∈ ω ∧ 𝑖 = suc 𝑗 ) ∧ ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) ) → 𝑗 ∈ 𝑖 ) |
24 |
|
simpr2 |
⊢ ( ( ( 𝑗 ∈ ω ∧ 𝑖 = suc 𝑗 ) ∧ ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) ) → 𝑖 ∈ 𝑛 ) |
25 |
|
3simpc |
⊢ ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) → ( 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) ) |
26 |
25
|
ancomd |
⊢ ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) → ( 𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛 ) ) |
27 |
26
|
adantl |
⊢ ( ( ( 𝑗 ∈ ω ∧ 𝑖 = suc 𝑗 ) ∧ ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) ) → ( 𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛 ) ) |
28 |
|
nnord |
⊢ ( 𝑛 ∈ ω → Ord 𝑛 ) |
29 |
|
ordtr1 |
⊢ ( Ord 𝑛 → ( ( 𝑗 ∈ 𝑖 ∧ 𝑖 ∈ 𝑛 ) → 𝑗 ∈ 𝑛 ) ) |
30 |
27 7 28 29
|
4syl |
⊢ ( ( ( 𝑗 ∈ ω ∧ 𝑖 = suc 𝑗 ) ∧ ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) ) → ( ( 𝑗 ∈ 𝑖 ∧ 𝑖 ∈ 𝑛 ) → 𝑗 ∈ 𝑛 ) ) |
31 |
23 24 30
|
mp2and |
⊢ ( ( ( 𝑗 ∈ ω ∧ 𝑖 = suc 𝑗 ) ∧ ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) ) → 𝑗 ∈ 𝑛 ) |
32 |
|
simplr |
⊢ ( ( ( 𝑗 ∈ ω ∧ 𝑖 = suc 𝑗 ) ∧ ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) ) → 𝑖 = suc 𝑗 ) |
33 |
31 32
|
jca |
⊢ ( ( ( 𝑗 ∈ ω ∧ 𝑖 = suc 𝑗 ) ∧ ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) ) → ( 𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ) ) |
34 |
20 33
|
bnj1023 |
⊢ ∃ 𝑗 ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) → ( 𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ) ) |