Step |
Hyp |
Ref |
Expression |
1 |
|
bnj110.1 |
⊢ 𝐴 ∈ V |
2 |
|
bnj110.2 |
⊢ ( 𝜓 ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → [ 𝑦 / 𝑥 ] 𝜑 ) ) |
3 |
|
ralnex |
⊢ ( ∀ 𝑧 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ¬ [ 𝑧 / 𝑥 ] 𝜑 ↔ ¬ ∃ 𝑧 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } [ 𝑧 / 𝑥 ] 𝜑 ) |
4 |
|
sbcng |
⊢ ( 𝑧 ∈ V → ( [ 𝑧 / 𝑥 ] ¬ 𝜑 ↔ ¬ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
5 |
4
|
elv |
⊢ ( [ 𝑧 / 𝑥 ] ¬ 𝜑 ↔ ¬ [ 𝑧 / 𝑥 ] 𝜑 ) |
6 |
5
|
bicomi |
⊢ ( ¬ [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] ¬ 𝜑 ) |
7 |
6
|
ralbii |
⊢ ( ∀ 𝑧 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ¬ [ 𝑧 / 𝑥 ] 𝜑 ↔ ∀ 𝑧 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } [ 𝑧 / 𝑥 ] ¬ 𝜑 ) |
8 |
3 7
|
bitr3i |
⊢ ( ¬ ∃ 𝑧 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } [ 𝑧 / 𝑥 ] 𝜑 ↔ ∀ 𝑧 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } [ 𝑧 / 𝑥 ] ¬ 𝜑 ) |
9 |
|
df-rab |
⊢ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝜑 ) } |
10 |
9
|
eleq2i |
⊢ ( 𝑧 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ↔ 𝑧 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝜑 ) } ) |
11 |
|
df-sbc |
⊢ ( [ 𝑧 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ ¬ 𝜑 ) ↔ 𝑧 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝜑 ) } ) |
12 |
|
sbcan |
⊢ ( [ 𝑧 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ ¬ 𝜑 ) ↔ ( [ 𝑧 / 𝑥 ] 𝑥 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] ¬ 𝜑 ) ) |
13 |
|
sbcel1v |
⊢ ( [ 𝑧 / 𝑥 ] 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) |
14 |
13
|
anbi1i |
⊢ ( ( [ 𝑧 / 𝑥 ] 𝑥 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] ¬ 𝜑 ) ↔ ( 𝑧 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] ¬ 𝜑 ) ) |
15 |
12 14
|
bitri |
⊢ ( [ 𝑧 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ ¬ 𝜑 ) ↔ ( 𝑧 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] ¬ 𝜑 ) ) |
16 |
11 15
|
bitr3i |
⊢ ( 𝑧 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝜑 ) } ↔ ( 𝑧 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] ¬ 𝜑 ) ) |
17 |
10 16
|
bitri |
⊢ ( 𝑧 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ↔ ( 𝑧 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] ¬ 𝜑 ) ) |
18 |
17
|
simprbi |
⊢ ( 𝑧 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } → [ 𝑧 / 𝑥 ] ¬ 𝜑 ) |
19 |
8 18
|
mprgbir |
⊢ ¬ ∃ 𝑧 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } [ 𝑧 / 𝑥 ] 𝜑 |
20 |
1
|
rabex |
⊢ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ∈ V |
21 |
20
|
biantrur |
⊢ ( 𝑅 Fr 𝐴 ↔ ( { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ∈ V ∧ 𝑅 Fr 𝐴 ) ) |
22 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀ 𝑥 ∈ 𝐴 𝜑 ) |
23 |
|
rabn0 |
⊢ ( { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ≠ ∅ ↔ ∃ 𝑥 ∈ 𝐴 ¬ 𝜑 ) |
24 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ⊆ 𝐴 |
25 |
24
|
biantrur |
⊢ ( { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ≠ ∅ ↔ ( { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ⊆ 𝐴 ∧ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ≠ ∅ ) ) |
26 |
23 25
|
bitr3i |
⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ( { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ⊆ 𝐴 ∧ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ≠ ∅ ) ) |
27 |
22 26
|
bitr3i |
⊢ ( ¬ ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ( { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ⊆ 𝐴 ∧ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ≠ ∅ ) ) |
28 |
|
fri |
⊢ ( ( ( { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ∈ V ∧ 𝑅 Fr 𝐴 ) ∧ ( { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ⊆ 𝐴 ∧ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ≠ ∅ ) ) → ∃ 𝑧 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ∀ 𝑤 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ¬ 𝑤 𝑅 𝑧 ) |
29 |
21 27 28
|
syl2anb |
⊢ ( ( 𝑅 Fr 𝐴 ∧ ¬ ∀ 𝑥 ∈ 𝐴 𝜑 ) → ∃ 𝑧 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ∀ 𝑤 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ¬ 𝑤 𝑅 𝑧 ) |
30 |
|
eqid |
⊢ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } = { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } |
31 |
30
|
bnj23 |
⊢ ( ∀ 𝑤 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ¬ 𝑤 𝑅 𝑧 → ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑧 → [ 𝑦 / 𝑥 ] 𝜑 ) ) |
32 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ( 𝑦 𝑅 𝑥 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
33 |
32
|
sbcbii |
⊢ ( [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → [ 𝑦 / 𝑥 ] 𝜑 ) ↔ [ 𝑧 / 𝑥 ] ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ( 𝑦 𝑅 𝑥 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
34 |
|
sbcal |
⊢ ( [ 𝑧 / 𝑥 ] ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ( 𝑦 𝑅 𝑥 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ↔ ∀ 𝑦 [ 𝑧 / 𝑥 ] ( 𝑦 ∈ 𝐴 → ( 𝑦 𝑅 𝑥 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
35 |
|
sbcimg |
⊢ ( 𝑧 ∈ V → ( [ 𝑧 / 𝑥 ] ( 𝑦 ∈ 𝐴 → ( 𝑦 𝑅 𝑥 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ↔ ( [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐴 → [ 𝑧 / 𝑥 ] ( 𝑦 𝑅 𝑥 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ) ) |
36 |
35
|
elv |
⊢ ( [ 𝑧 / 𝑥 ] ( 𝑦 ∈ 𝐴 → ( 𝑦 𝑅 𝑥 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ↔ ( [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐴 → [ 𝑧 / 𝑥 ] ( 𝑦 𝑅 𝑥 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
37 |
|
vex |
⊢ 𝑧 ∈ V |
38 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐴 |
39 |
37 38
|
sbcgfi |
⊢ ( [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) |
40 |
|
sbcimg |
⊢ ( 𝑧 ∈ V → ( [ 𝑧 / 𝑥 ] ( 𝑦 𝑅 𝑥 → [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( [ 𝑧 / 𝑥 ] 𝑦 𝑅 𝑥 → [ 𝑧 / 𝑥 ] [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
41 |
40
|
elv |
⊢ ( [ 𝑧 / 𝑥 ] ( 𝑦 𝑅 𝑥 → [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( [ 𝑧 / 𝑥 ] 𝑦 𝑅 𝑥 → [ 𝑧 / 𝑥 ] [ 𝑦 / 𝑥 ] 𝜑 ) ) |
42 |
|
sbcbr2g |
⊢ ( 𝑧 ∈ V → ( [ 𝑧 / 𝑥 ] 𝑦 𝑅 𝑥 ↔ 𝑦 𝑅 ⦋ 𝑧 / 𝑥 ⦌ 𝑥 ) ) |
43 |
42
|
elv |
⊢ ( [ 𝑧 / 𝑥 ] 𝑦 𝑅 𝑥 ↔ 𝑦 𝑅 ⦋ 𝑧 / 𝑥 ⦌ 𝑥 ) |
44 |
37
|
csbvargi |
⊢ ⦋ 𝑧 / 𝑥 ⦌ 𝑥 = 𝑧 |
45 |
44
|
breq2i |
⊢ ( 𝑦 𝑅 ⦋ 𝑧 / 𝑥 ⦌ 𝑥 ↔ 𝑦 𝑅 𝑧 ) |
46 |
43 45
|
bitri |
⊢ ( [ 𝑧 / 𝑥 ] 𝑦 𝑅 𝑥 ↔ 𝑦 𝑅 𝑧 ) |
47 |
|
nfsbc1v |
⊢ Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 |
48 |
37 47
|
sbcgfi |
⊢ ( [ 𝑧 / 𝑥 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) |
49 |
46 48
|
imbi12i |
⊢ ( ( [ 𝑧 / 𝑥 ] 𝑦 𝑅 𝑥 → [ 𝑧 / 𝑥 ] [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( 𝑦 𝑅 𝑧 → [ 𝑦 / 𝑥 ] 𝜑 ) ) |
50 |
41 49
|
bitri |
⊢ ( [ 𝑧 / 𝑥 ] ( 𝑦 𝑅 𝑥 → [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( 𝑦 𝑅 𝑧 → [ 𝑦 / 𝑥 ] 𝜑 ) ) |
51 |
39 50
|
imbi12i |
⊢ ( ( [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐴 → [ 𝑧 / 𝑥 ] ( 𝑦 𝑅 𝑥 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ↔ ( 𝑦 ∈ 𝐴 → ( 𝑦 𝑅 𝑧 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
52 |
36 51
|
bitri |
⊢ ( [ 𝑧 / 𝑥 ] ( 𝑦 ∈ 𝐴 → ( 𝑦 𝑅 𝑥 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ↔ ( 𝑦 ∈ 𝐴 → ( 𝑦 𝑅 𝑧 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
53 |
52
|
albii |
⊢ ( ∀ 𝑦 [ 𝑧 / 𝑥 ] ( 𝑦 ∈ 𝐴 → ( 𝑦 𝑅 𝑥 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ( 𝑦 𝑅 𝑧 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
54 |
34 53
|
bitri |
⊢ ( [ 𝑧 / 𝑥 ] ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ( 𝑦 𝑅 𝑥 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ( 𝑦 𝑅 𝑧 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
55 |
33 54
|
bitri |
⊢ ( [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ( 𝑦 𝑅 𝑧 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
56 |
2
|
sbcbii |
⊢ ( [ 𝑧 / 𝑥 ] 𝜓 ↔ [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → [ 𝑦 / 𝑥 ] 𝜑 ) ) |
57 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑧 → [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ( 𝑦 𝑅 𝑧 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
58 |
55 56 57
|
3bitr4i |
⊢ ( [ 𝑧 / 𝑥 ] 𝜓 ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑧 → [ 𝑦 / 𝑥 ] 𝜑 ) ) |
59 |
31 58
|
sylibr |
⊢ ( ∀ 𝑤 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ¬ 𝑤 𝑅 𝑧 → [ 𝑧 / 𝑥 ] 𝜓 ) |
60 |
29 59
|
bnj31 |
⊢ ( ( 𝑅 Fr 𝐴 ∧ ¬ ∀ 𝑥 ∈ 𝐴 𝜑 ) → ∃ 𝑧 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } [ 𝑧 / 𝑥 ] 𝜓 ) |
61 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝜓 → 𝜑 ) |
62 |
|
nfsbc1v |
⊢ Ⅎ 𝑥 [ 𝑧 / 𝑥 ] 𝜓 |
63 |
|
nfsbc1v |
⊢ Ⅎ 𝑥 [ 𝑧 / 𝑥 ] 𝜑 |
64 |
62 63
|
nfim |
⊢ Ⅎ 𝑥 ( [ 𝑧 / 𝑥 ] 𝜓 → [ 𝑧 / 𝑥 ] 𝜑 ) |
65 |
|
sbceq1a |
⊢ ( 𝑥 = 𝑧 → ( 𝜓 ↔ [ 𝑧 / 𝑥 ] 𝜓 ) ) |
66 |
|
sbceq1a |
⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
67 |
65 66
|
imbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝜓 → 𝜑 ) ↔ ( [ 𝑧 / 𝑥 ] 𝜓 → [ 𝑧 / 𝑥 ] 𝜑 ) ) ) |
68 |
61 64 67
|
cbvralw |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ↔ ∀ 𝑧 ∈ 𝐴 ( [ 𝑧 / 𝑥 ] 𝜓 → [ 𝑧 / 𝑥 ] 𝜑 ) ) |
69 |
|
elrabi |
⊢ ( 𝑧 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } → 𝑧 ∈ 𝐴 ) |
70 |
69
|
imim1i |
⊢ ( ( 𝑧 ∈ 𝐴 → ( [ 𝑧 / 𝑥 ] 𝜓 → [ 𝑧 / 𝑥 ] 𝜑 ) ) → ( 𝑧 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } → ( [ 𝑧 / 𝑥 ] 𝜓 → [ 𝑧 / 𝑥 ] 𝜑 ) ) ) |
71 |
70
|
ralimi2 |
⊢ ( ∀ 𝑧 ∈ 𝐴 ( [ 𝑧 / 𝑥 ] 𝜓 → [ 𝑧 / 𝑥 ] 𝜑 ) → ∀ 𝑧 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ( [ 𝑧 / 𝑥 ] 𝜓 → [ 𝑧 / 𝑥 ] 𝜑 ) ) |
72 |
68 71
|
sylbi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) → ∀ 𝑧 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ( [ 𝑧 / 𝑥 ] 𝜓 → [ 𝑧 / 𝑥 ] 𝜑 ) ) |
73 |
|
rexim |
⊢ ( ∀ 𝑧 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ( [ 𝑧 / 𝑥 ] 𝜓 → [ 𝑧 / 𝑥 ] 𝜑 ) → ( ∃ 𝑧 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } [ 𝑧 / 𝑥 ] 𝜓 → ∃ 𝑧 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } [ 𝑧 / 𝑥 ] 𝜑 ) ) |
74 |
72 73
|
syl |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) → ( ∃ 𝑧 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } [ 𝑧 / 𝑥 ] 𝜓 → ∃ 𝑧 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } [ 𝑧 / 𝑥 ] 𝜑 ) ) |
75 |
60 74
|
mpan9 |
⊢ ( ( ( 𝑅 Fr 𝐴 ∧ ¬ ∀ 𝑥 ∈ 𝐴 𝜑 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ) → ∃ 𝑧 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } [ 𝑧 / 𝑥 ] 𝜑 ) |
76 |
75
|
an32s |
⊢ ( ( ( 𝑅 Fr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ) ∧ ¬ ∀ 𝑥 ∈ 𝐴 𝜑 ) → ∃ 𝑧 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } [ 𝑧 / 𝑥 ] 𝜑 ) |
77 |
19 76
|
mto |
⊢ ¬ ( ( 𝑅 Fr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ) ∧ ¬ ∀ 𝑥 ∈ 𝐴 𝜑 ) |
78 |
|
iman |
⊢ ( ( ( 𝑅 Fr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ) → ∀ 𝑥 ∈ 𝐴 𝜑 ) ↔ ¬ ( ( 𝑅 Fr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ) ∧ ¬ ∀ 𝑥 ∈ 𝐴 𝜑 ) ) |
79 |
77 78
|
mpbir |
⊢ ( ( 𝑅 Fr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ) → ∀ 𝑥 ∈ 𝐴 𝜑 ) |