Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj1101.1 | ⊢ ∃ 𝑥 ( 𝜑 → 𝜓 ) | |
bnj1101.2 | ⊢ ( 𝜒 → 𝜑 ) | ||
Assertion | bnj1101 | ⊢ ∃ 𝑥 ( 𝜒 → 𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1101.1 | ⊢ ∃ 𝑥 ( 𝜑 → 𝜓 ) | |
2 | bnj1101.2 | ⊢ ( 𝜒 → 𝜑 ) | |
3 | pm3.42 | ⊢ ( ( 𝜑 → 𝜓 ) → ( ( 𝜒 ∧ 𝜑 ) → 𝜓 ) ) | |
4 | 1 3 | bnj101 | ⊢ ∃ 𝑥 ( ( 𝜒 ∧ 𝜑 ) → 𝜓 ) |
5 | 2 | pm4.71i | ⊢ ( 𝜒 ↔ ( 𝜒 ∧ 𝜑 ) ) |
6 | 5 | imbi1i | ⊢ ( ( 𝜒 → 𝜓 ) ↔ ( ( 𝜒 ∧ 𝜑 ) → 𝜓 ) ) |
7 | 6 | exbii | ⊢ ( ∃ 𝑥 ( 𝜒 → 𝜓 ) ↔ ∃ 𝑥 ( ( 𝜒 ∧ 𝜑 ) → 𝜓 ) ) |
8 | 4 7 | mpbir | ⊢ ∃ 𝑥 ( 𝜒 → 𝜓 ) |