Metamath Proof Explorer


Theorem bnj1101

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1101.1 𝑥 ( 𝜑𝜓 )
bnj1101.2 ( 𝜒𝜑 )
Assertion bnj1101 𝑥 ( 𝜒𝜓 )

Proof

Step Hyp Ref Expression
1 bnj1101.1 𝑥 ( 𝜑𝜓 )
2 bnj1101.2 ( 𝜒𝜑 )
3 pm3.42 ( ( 𝜑𝜓 ) → ( ( 𝜒𝜑 ) → 𝜓 ) )
4 1 3 bnj101 𝑥 ( ( 𝜒𝜑 ) → 𝜓 )
5 2 pm4.71i ( 𝜒 ↔ ( 𝜒𝜑 ) )
6 5 imbi1i ( ( 𝜒𝜓 ) ↔ ( ( 𝜒𝜑 ) → 𝜓 ) )
7 6 exbii ( ∃ 𝑥 ( 𝜒𝜓 ) ↔ ∃ 𝑥 ( ( 𝜒𝜑 ) → 𝜓 ) )
8 4 7 mpbir 𝑥 ( 𝜒𝜓 )