| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1110.3 | 
							⊢ ( 𝜒  ↔  ( 𝑛  ∈  𝐷  ∧  𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bnj1110.7 | 
							⊢ 𝐷  =  ( ω  ∖  { ∅ } )  | 
						
						
							| 3 | 
							
								
							 | 
							bnj1110.18 | 
							⊢ ( 𝜎  ↔  ( ( 𝑗  ∈  𝑛  ∧  𝑗  E  𝑖 )  →  𝜂′ ) )  | 
						
						
							| 4 | 
							
								
							 | 
							bnj1110.19 | 
							⊢ ( 𝜑0  ↔  ( 𝑖  ∈  𝑛  ∧  𝜎  ∧  𝑓  ∈  𝐾  ∧  𝑖  ∈  dom  𝑓 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							bnj1110.26 | 
							⊢ ( 𝜂′  ↔  ( ( 𝑓  ∈  𝐾  ∧  𝑗  ∈  dom  𝑓 )  →  ( 𝑓 ‘ 𝑗 )  ⊆  𝐵 ) )  | 
						
						
							| 6 | 
							
								2
							 | 
							bnj1098 | 
							⊢ ∃ 𝑗 ( ( 𝑖  ≠  ∅  ∧  𝑖  ∈  𝑛  ∧  𝑛  ∈  𝐷 )  →  ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							bnj219 | 
							⊢ ( 𝑖  =  suc  𝑗  →  𝑗  E  𝑖 )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantl | 
							⊢ ( ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗 )  →  𝑗  E  𝑖 )  | 
						
						
							| 9 | 
							
								8
							 | 
							ancli | 
							⊢ ( ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗 )  →  ( ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗 )  ∧  𝑗  E  𝑖 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							df-3an | 
							⊢ ( ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 )  ↔  ( ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗 )  ∧  𝑗  E  𝑖 ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							sylibr | 
							⊢ ( ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗 )  →  ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 ) )  | 
						
						
							| 12 | 
							
								6 11
							 | 
							bnj1023 | 
							⊢ ∃ 𝑗 ( ( 𝑖  ≠  ∅  ∧  𝑖  ∈  𝑛  ∧  𝑛  ∈  𝐷 )  →  ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 ) )  | 
						
						
							| 13 | 
							
								1
							 | 
							bnj1232 | 
							⊢ ( 𝜒  →  𝑛  ∈  𝐷 )  | 
						
						
							| 14 | 
							
								13
							 | 
							3ad2ant3 | 
							⊢ ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  →  𝑛  ∈  𝐷 )  | 
						
						
							| 15 | 
							
								4
							 | 
							bnj1232 | 
							⊢ ( 𝜑0  →  𝑖  ∈  𝑛 )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							anim12ci | 
							⊢ ( ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  ∧  𝜑0 )  →  ( 𝑖  ∈  𝑛  ∧  𝑛  ∈  𝐷 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							anim2i | 
							⊢ ( ( 𝑖  ≠  ∅  ∧  ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  ∧  𝜑0 ) )  →  ( 𝑖  ≠  ∅  ∧  ( 𝑖  ∈  𝑛  ∧  𝑛  ∈  𝐷 ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							3anass | 
							⊢ ( ( 𝑖  ≠  ∅  ∧  𝑖  ∈  𝑛  ∧  𝑛  ∈  𝐷 )  ↔  ( 𝑖  ≠  ∅  ∧  ( 𝑖  ∈  𝑛  ∧  𝑛  ∈  𝐷 ) ) )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							sylibr | 
							⊢ ( ( 𝑖  ≠  ∅  ∧  ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  ∧  𝜑0 ) )  →  ( 𝑖  ≠  ∅  ∧  𝑖  ∈  𝑛  ∧  𝑛  ∈  𝐷 ) )  | 
						
						
							| 20 | 
							
								12 19
							 | 
							bnj1101 | 
							⊢ ∃ 𝑗 ( ( 𝑖  ≠  ∅  ∧  ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  ∧  𝜑0 ) )  →  ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 ) )  | 
						
						
							| 21 | 
							
								
							 | 
							3simpb | 
							⊢ ( ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 )  →  ( 𝑗  ∈  𝑛  ∧  𝑗  E  𝑖 ) )  | 
						
						
							| 22 | 
							
								4
							 | 
							bnj1235 | 
							⊢ ( 𝜑0  →  𝜎 )  | 
						
						
							| 23 | 
							
								22
							 | 
							ad2antll | 
							⊢ ( ( 𝑖  ≠  ∅  ∧  ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  ∧  𝜑0 ) )  →  𝜎 )  | 
						
						
							| 24 | 
							
								23 3
							 | 
							sylib | 
							⊢ ( ( 𝑖  ≠  ∅  ∧  ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  ∧  𝜑0 ) )  →  ( ( 𝑗  ∈  𝑛  ∧  𝑗  E  𝑖 )  →  𝜂′ ) )  | 
						
						
							| 25 | 
							
								21 24
							 | 
							syl5 | 
							⊢ ( ( 𝑖  ≠  ∅  ∧  ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  ∧  𝜑0 ) )  →  ( ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 )  →  𝜂′ ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							a2i | 
							⊢ ( ( ( 𝑖  ≠  ∅  ∧  ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  ∧  𝜑0 ) )  →  ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 ) )  →  ( ( 𝑖  ≠  ∅  ∧  ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  ∧  𝜑0 ) )  →  𝜂′ ) )  | 
						
						
							| 27 | 
							
								
							 | 
							pm3.43 | 
							⊢ ( ( ( ( 𝑖  ≠  ∅  ∧  ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  ∧  𝜑0 ) )  →  ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 ) )  ∧  ( ( 𝑖  ≠  ∅  ∧  ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  ∧  𝜑0 ) )  →  𝜂′ ) )  →  ( ( 𝑖  ≠  ∅  ∧  ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  ∧  𝜑0 ) )  →  ( ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 )  ∧  𝜂′ ) ) )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							mpdan | 
							⊢ ( ( ( 𝑖  ≠  ∅  ∧  ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  ∧  𝜑0 ) )  →  ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 ) )  →  ( ( 𝑖  ≠  ∅  ∧  ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  ∧  𝜑0 ) )  →  ( ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 )  ∧  𝜂′ ) ) )  | 
						
						
							| 29 | 
							
								20 28
							 | 
							bnj101 | 
							⊢ ∃ 𝑗 ( ( 𝑖  ≠  ∅  ∧  ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  ∧  𝜑0 ) )  →  ( ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 )  ∧  𝜂′ ) )  | 
						
						
							| 30 | 
							
								4
							 | 
							bnj1247 | 
							⊢ ( 𝜑0  →  𝑓  ∈  𝐾 )  | 
						
						
							| 31 | 
							
								30
							 | 
							ad2antll | 
							⊢ ( ( 𝑖  ≠  ∅  ∧  ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  ∧  𝜑0 ) )  →  𝑓  ∈  𝐾 )  | 
						
						
							| 32 | 
							
								
							 | 
							pm3.43i | 
							⊢ ( ( ( 𝑖  ≠  ∅  ∧  ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  ∧  𝜑0 ) )  →  𝑓  ∈  𝐾 )  →  ( ( ( 𝑖  ≠  ∅  ∧  ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  ∧  𝜑0 ) )  →  ( ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 )  ∧  𝜂′ ) )  →  ( ( 𝑖  ≠  ∅  ∧  ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  ∧  𝜑0 ) )  →  ( 𝑓  ∈  𝐾  ∧  ( ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 )  ∧  𝜂′ ) ) ) ) )  | 
						
						
							| 33 | 
							
								31 32
							 | 
							ax-mp | 
							⊢ ( ( ( 𝑖  ≠  ∅  ∧  ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  ∧  𝜑0 ) )  →  ( ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 )  ∧  𝜂′ ) )  →  ( ( 𝑖  ≠  ∅  ∧  ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  ∧  𝜑0 ) )  →  ( 𝑓  ∈  𝐾  ∧  ( ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 )  ∧  𝜂′ ) ) ) )  | 
						
						
							| 34 | 
							
								29 33
							 | 
							bnj101 | 
							⊢ ∃ 𝑗 ( ( 𝑖  ≠  ∅  ∧  ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  ∧  𝜑0 ) )  →  ( 𝑓  ∈  𝐾  ∧  ( ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 )  ∧  𝜂′ ) ) )  | 
						
						
							| 35 | 
							
								
							 | 
							fndm | 
							⊢ ( 𝑓  Fn  𝑛  →  dom  𝑓  =  𝑛 )  | 
						
						
							| 36 | 
							
								1 35
							 | 
							bnj770 | 
							⊢ ( 𝜒  →  dom  𝑓  =  𝑛 )  | 
						
						
							| 37 | 
							
								36
							 | 
							3ad2ant3 | 
							⊢ ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  →  dom  𝑓  =  𝑛 )  | 
						
						
							| 38 | 
							
								37
							 | 
							ad2antrl | 
							⊢ ( ( 𝑖  ≠  ∅  ∧  ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  ∧  𝜑0 ) )  →  dom  𝑓  =  𝑛 )  | 
						
						
							| 39 | 
							
								38
							 | 
							eleq2d | 
							⊢ ( ( 𝑖  ≠  ∅  ∧  ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  ∧  𝜑0 ) )  →  ( 𝑗  ∈  dom  𝑓  ↔  𝑗  ∈  𝑛 ) )  | 
						
						
							| 40 | 
							
								
							 | 
							pm3.43i | 
							⊢ ( ( ( 𝑖  ≠  ∅  ∧  ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  ∧  𝜑0 ) )  →  ( 𝑗  ∈  dom  𝑓  ↔  𝑗  ∈  𝑛 ) )  →  ( ( ( 𝑖  ≠  ∅  ∧  ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  ∧  𝜑0 ) )  →  ( 𝑓  ∈  𝐾  ∧  ( ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 )  ∧  𝜂′ ) ) )  →  ( ( 𝑖  ≠  ∅  ∧  ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  ∧  𝜑0 ) )  →  ( ( 𝑗  ∈  dom  𝑓  ↔  𝑗  ∈  𝑛 )  ∧  ( 𝑓  ∈  𝐾  ∧  ( ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 )  ∧  𝜂′ ) ) ) ) ) )  | 
						
						
							| 41 | 
							
								39 40
							 | 
							ax-mp | 
							⊢ ( ( ( 𝑖  ≠  ∅  ∧  ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  ∧  𝜑0 ) )  →  ( 𝑓  ∈  𝐾  ∧  ( ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 )  ∧  𝜂′ ) ) )  →  ( ( 𝑖  ≠  ∅  ∧  ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  ∧  𝜑0 ) )  →  ( ( 𝑗  ∈  dom  𝑓  ↔  𝑗  ∈  𝑛 )  ∧  ( 𝑓  ∈  𝐾  ∧  ( ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 )  ∧  𝜂′ ) ) ) ) )  | 
						
						
							| 42 | 
							
								34 41
							 | 
							bnj101 | 
							⊢ ∃ 𝑗 ( ( 𝑖  ≠  ∅  ∧  ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  ∧  𝜑0 ) )  →  ( ( 𝑗  ∈  dom  𝑓  ↔  𝑗  ∈  𝑛 )  ∧  ( 𝑓  ∈  𝐾  ∧  ( ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 )  ∧  𝜂′ ) ) ) )  | 
						
						
							| 43 | 
							
								
							 | 
							bnj268 | 
							⊢ ( ( ( 𝑗  ∈  dom  𝑓  ↔  𝑗  ∈  𝑛 )  ∧  𝑓  ∈  𝐾  ∧  ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 )  ∧  𝜂′ )  ↔  ( ( 𝑗  ∈  dom  𝑓  ↔  𝑗  ∈  𝑛 )  ∧  ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 )  ∧  𝑓  ∈  𝐾  ∧  𝜂′ ) )  | 
						
						
							| 44 | 
							
								
							 | 
							bnj251 | 
							⊢ ( ( ( 𝑗  ∈  dom  𝑓  ↔  𝑗  ∈  𝑛 )  ∧  𝑓  ∈  𝐾  ∧  ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 )  ∧  𝜂′ )  ↔  ( ( 𝑗  ∈  dom  𝑓  ↔  𝑗  ∈  𝑛 )  ∧  ( 𝑓  ∈  𝐾  ∧  ( ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 )  ∧  𝜂′ ) ) ) )  | 
						
						
							| 45 | 
							
								43 44
							 | 
							bitr3i | 
							⊢ ( ( ( 𝑗  ∈  dom  𝑓  ↔  𝑗  ∈  𝑛 )  ∧  ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 )  ∧  𝑓  ∈  𝐾  ∧  𝜂′ )  ↔  ( ( 𝑗  ∈  dom  𝑓  ↔  𝑗  ∈  𝑛 )  ∧  ( 𝑓  ∈  𝐾  ∧  ( ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 )  ∧  𝜂′ ) ) ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							imbi2i | 
							⊢ ( ( ( 𝑖  ≠  ∅  ∧  ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  ∧  𝜑0 ) )  →  ( ( 𝑗  ∈  dom  𝑓  ↔  𝑗  ∈  𝑛 )  ∧  ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 )  ∧  𝑓  ∈  𝐾  ∧  𝜂′ ) )  ↔  ( ( 𝑖  ≠  ∅  ∧  ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  ∧  𝜑0 ) )  →  ( ( 𝑗  ∈  dom  𝑓  ↔  𝑗  ∈  𝑛 )  ∧  ( 𝑓  ∈  𝐾  ∧  ( ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 )  ∧  𝜂′ ) ) ) ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							exbii | 
							⊢ ( ∃ 𝑗 ( ( 𝑖  ≠  ∅  ∧  ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  ∧  𝜑0 ) )  →  ( ( 𝑗  ∈  dom  𝑓  ↔  𝑗  ∈  𝑛 )  ∧  ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 )  ∧  𝑓  ∈  𝐾  ∧  𝜂′ ) )  ↔  ∃ 𝑗 ( ( 𝑖  ≠  ∅  ∧  ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  ∧  𝜑0 ) )  →  ( ( 𝑗  ∈  dom  𝑓  ↔  𝑗  ∈  𝑛 )  ∧  ( 𝑓  ∈  𝐾  ∧  ( ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 )  ∧  𝜂′ ) ) ) ) )  | 
						
						
							| 48 | 
							
								42 47
							 | 
							mpbir | 
							⊢ ∃ 𝑗 ( ( 𝑖  ≠  ∅  ∧  ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  ∧  𝜑0 ) )  →  ( ( 𝑗  ∈  dom  𝑓  ↔  𝑗  ∈  𝑛 )  ∧  ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 )  ∧  𝑓  ∈  𝐾  ∧  𝜂′ ) )  | 
						
						
							| 49 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 )  →  𝑗  ∈  𝑛 )  | 
						
						
							| 50 | 
							
								49
							 | 
							bnj706 | 
							⊢ ( ( ( 𝑗  ∈  dom  𝑓  ↔  𝑗  ∈  𝑛 )  ∧  ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 )  ∧  𝑓  ∈  𝐾  ∧  𝜂′ )  →  𝑗  ∈  𝑛 )  | 
						
						
							| 51 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 )  →  𝑖  =  suc  𝑗 )  | 
						
						
							| 52 | 
							
								51
							 | 
							bnj706 | 
							⊢ ( ( ( 𝑗  ∈  dom  𝑓  ↔  𝑗  ∈  𝑛 )  ∧  ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 )  ∧  𝑓  ∈  𝐾  ∧  𝜂′ )  →  𝑖  =  suc  𝑗 )  | 
						
						
							| 53 | 
							
								
							 | 
							bnj258 | 
							⊢ ( ( ( 𝑗  ∈  dom  𝑓  ↔  𝑗  ∈  𝑛 )  ∧  ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 )  ∧  𝑓  ∈  𝐾  ∧  𝜂′ )  ↔  ( ( ( 𝑗  ∈  dom  𝑓  ↔  𝑗  ∈  𝑛 )  ∧  ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 )  ∧  𝜂′ )  ∧  𝑓  ∈  𝐾 ) )  | 
						
						
							| 54 | 
							
								53
							 | 
							simprbi | 
							⊢ ( ( ( 𝑗  ∈  dom  𝑓  ↔  𝑗  ∈  𝑛 )  ∧  ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 )  ∧  𝑓  ∈  𝐾  ∧  𝜂′ )  →  𝑓  ∈  𝐾 )  | 
						
						
							| 55 | 
							
								
							 | 
							bnj642 | 
							⊢ ( ( ( 𝑗  ∈  dom  𝑓  ↔  𝑗  ∈  𝑛 )  ∧  ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 )  ∧  𝑓  ∈  𝐾  ∧  𝜂′ )  →  ( 𝑗  ∈  dom  𝑓  ↔  𝑗  ∈  𝑛 ) )  | 
						
						
							| 56 | 
							
								50 55
							 | 
							mpbird | 
							⊢ ( ( ( 𝑗  ∈  dom  𝑓  ↔  𝑗  ∈  𝑛 )  ∧  ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 )  ∧  𝑓  ∈  𝐾  ∧  𝜂′ )  →  𝑗  ∈  dom  𝑓 )  | 
						
						
							| 57 | 
							
								
							 | 
							bnj645 | 
							⊢ ( ( ( 𝑗  ∈  dom  𝑓  ↔  𝑗  ∈  𝑛 )  ∧  ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 )  ∧  𝑓  ∈  𝐾  ∧  𝜂′ )  →  𝜂′ )  | 
						
						
							| 58 | 
							
								57 5
							 | 
							sylib | 
							⊢ ( ( ( 𝑗  ∈  dom  𝑓  ↔  𝑗  ∈  𝑛 )  ∧  ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 )  ∧  𝑓  ∈  𝐾  ∧  𝜂′ )  →  ( ( 𝑓  ∈  𝐾  ∧  𝑗  ∈  dom  𝑓 )  →  ( 𝑓 ‘ 𝑗 )  ⊆  𝐵 ) )  | 
						
						
							| 59 | 
							
								54 56 58
							 | 
							mp2and | 
							⊢ ( ( ( 𝑗  ∈  dom  𝑓  ↔  𝑗  ∈  𝑛 )  ∧  ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 )  ∧  𝑓  ∈  𝐾  ∧  𝜂′ )  →  ( 𝑓 ‘ 𝑗 )  ⊆  𝐵 )  | 
						
						
							| 60 | 
							
								50 52 59
							 | 
							3jca | 
							⊢ ( ( ( 𝑗  ∈  dom  𝑓  ↔  𝑗  ∈  𝑛 )  ∧  ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  𝑗  E  𝑖 )  ∧  𝑓  ∈  𝐾  ∧  𝜂′ )  →  ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  ( 𝑓 ‘ 𝑗 )  ⊆  𝐵 ) )  | 
						
						
							| 61 | 
							
								48 60
							 | 
							bnj1023 | 
							⊢ ∃ 𝑗 ( ( 𝑖  ≠  ∅  ∧  ( ( 𝜃  ∧  𝜏  ∧  𝜒 )  ∧  𝜑0 ) )  →  ( 𝑗  ∈  𝑛  ∧  𝑖  =  suc  𝑗  ∧  ( 𝑓 ‘ 𝑗 )  ⊆  𝐵 ) )  |