Metamath Proof Explorer


Theorem bnj1112

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj1112.1 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
Assertion bnj1112 ( 𝜓 ↔ ∀ 𝑗 ( ( 𝑗 ∈ ω ∧ suc 𝑗𝑛 ) → ( 𝑓 ‘ suc 𝑗 ) = 𝑦 ∈ ( 𝑓𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 bnj1112.1 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
2 1 bnj115 ( 𝜓 ↔ ∀ 𝑖 ( ( 𝑖 ∈ ω ∧ suc 𝑖𝑛 ) → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
3 eleq1w ( 𝑖 = 𝑗 → ( 𝑖 ∈ ω ↔ 𝑗 ∈ ω ) )
4 suceq ( 𝑖 = 𝑗 → suc 𝑖 = suc 𝑗 )
5 4 eleq1d ( 𝑖 = 𝑗 → ( suc 𝑖𝑛 ↔ suc 𝑗𝑛 ) )
6 3 5 anbi12d ( 𝑖 = 𝑗 → ( ( 𝑖 ∈ ω ∧ suc 𝑖𝑛 ) ↔ ( 𝑗 ∈ ω ∧ suc 𝑗𝑛 ) ) )
7 4 fveq2d ( 𝑖 = 𝑗 → ( 𝑓 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑗 ) )
8 fveq2 ( 𝑖 = 𝑗 → ( 𝑓𝑖 ) = ( 𝑓𝑗 ) )
9 8 bnj1113 ( 𝑖 = 𝑗 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = 𝑦 ∈ ( 𝑓𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) )
10 7 9 eqeq12d ( 𝑖 = 𝑗 → ( ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ↔ ( 𝑓 ‘ suc 𝑗 ) = 𝑦 ∈ ( 𝑓𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
11 6 10 imbi12d ( 𝑖 = 𝑗 → ( ( ( 𝑖 ∈ ω ∧ suc 𝑖𝑛 ) → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( ( 𝑗 ∈ ω ∧ suc 𝑗𝑛 ) → ( 𝑓 ‘ suc 𝑗 ) = 𝑦 ∈ ( 𝑓𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
12 11 cbvalvw ( ∀ 𝑖 ( ( 𝑖 ∈ ω ∧ suc 𝑖𝑛 ) → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ∀ 𝑗 ( ( 𝑗 ∈ ω ∧ suc 𝑗𝑛 ) → ( 𝑓 ‘ suc 𝑗 ) = 𝑦 ∈ ( 𝑓𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
13 2 12 bitri ( 𝜓 ↔ ∀ 𝑗 ( ( 𝑗 ∈ ω ∧ suc 𝑗𝑛 ) → ( 𝑓 ‘ suc 𝑗 ) = 𝑦 ∈ ( 𝑓𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )