Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1112.1 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
2 |
1
|
bnj115 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ( ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
3 |
|
eleq1w |
⊢ ( 𝑖 = 𝑗 → ( 𝑖 ∈ ω ↔ 𝑗 ∈ ω ) ) |
4 |
|
suceq |
⊢ ( 𝑖 = 𝑗 → suc 𝑖 = suc 𝑗 ) |
5 |
4
|
eleq1d |
⊢ ( 𝑖 = 𝑗 → ( suc 𝑖 ∈ 𝑛 ↔ suc 𝑗 ∈ 𝑛 ) ) |
6 |
3 5
|
anbi12d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ↔ ( 𝑗 ∈ ω ∧ suc 𝑗 ∈ 𝑛 ) ) ) |
7 |
4
|
fveq2d |
⊢ ( 𝑖 = 𝑗 → ( 𝑓 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑗 ) ) |
8 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑓 ‘ 𝑖 ) = ( 𝑓 ‘ 𝑗 ) ) |
9 |
8
|
bnj1113 |
⊢ ( 𝑖 = 𝑗 → ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
10 |
7 9
|
eqeq12d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ↔ ( 𝑓 ‘ suc 𝑗 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
11 |
6 10
|
imbi12d |
⊢ ( 𝑖 = 𝑗 → ( ( ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( ( 𝑗 ∈ ω ∧ suc 𝑗 ∈ 𝑛 ) → ( 𝑓 ‘ suc 𝑗 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
12 |
11
|
cbvalvw |
⊢ ( ∀ 𝑖 ( ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ∀ 𝑗 ( ( 𝑗 ∈ ω ∧ suc 𝑗 ∈ 𝑛 ) → ( 𝑓 ‘ suc 𝑗 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
13 |
2 12
|
bitri |
⊢ ( 𝜓 ↔ ∀ 𝑗 ( ( 𝑗 ∈ ω ∧ suc 𝑗 ∈ 𝑛 ) → ( 𝑓 ‘ suc 𝑗 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |