| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1112.1 | 
							⊢ ( 𝜓  ↔  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							bnj115 | 
							⊢ ( 𝜓  ↔  ∀ 𝑖 ( ( 𝑖  ∈  ω  ∧  suc  𝑖  ∈  𝑛 )  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							eleq1w | 
							⊢ ( 𝑖  =  𝑗  →  ( 𝑖  ∈  ω  ↔  𝑗  ∈  ω ) )  | 
						
						
							| 4 | 
							
								
							 | 
							suceq | 
							⊢ ( 𝑖  =  𝑗  →  suc  𝑖  =  suc  𝑗 )  | 
						
						
							| 5 | 
							
								4
							 | 
							eleq1d | 
							⊢ ( 𝑖  =  𝑗  →  ( suc  𝑖  ∈  𝑛  ↔  suc  𝑗  ∈  𝑛 ) )  | 
						
						
							| 6 | 
							
								3 5
							 | 
							anbi12d | 
							⊢ ( 𝑖  =  𝑗  →  ( ( 𝑖  ∈  ω  ∧  suc  𝑖  ∈  𝑛 )  ↔  ( 𝑗  ∈  ω  ∧  suc  𝑗  ∈  𝑛 ) ) )  | 
						
						
							| 7 | 
							
								4
							 | 
							fveq2d | 
							⊢ ( 𝑖  =  𝑗  →  ( 𝑓 ‘ suc  𝑖 )  =  ( 𝑓 ‘ suc  𝑗 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑖  =  𝑗  →  ( 𝑓 ‘ 𝑖 )  =  ( 𝑓 ‘ 𝑗 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							bnj1113 | 
							⊢ ( 𝑖  =  𝑗  →  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑗 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 10 | 
							
								7 9
							 | 
							eqeq12d | 
							⊢ ( 𝑖  =  𝑗  →  ( ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 )  ↔  ( 𝑓 ‘ suc  𝑗 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑗 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 11 | 
							
								6 10
							 | 
							imbi12d | 
							⊢ ( 𝑖  =  𝑗  →  ( ( ( 𝑖  ∈  ω  ∧  suc  𝑖  ∈  𝑛 )  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  ↔  ( ( 𝑗  ∈  ω  ∧  suc  𝑗  ∈  𝑛 )  →  ( 𝑓 ‘ suc  𝑗 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑗 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							cbvalvw | 
							⊢ ( ∀ 𝑖 ( ( 𝑖  ∈  ω  ∧  suc  𝑖  ∈  𝑛 )  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  ↔  ∀ 𝑗 ( ( 𝑗  ∈  ω  ∧  suc  𝑗  ∈  𝑛 )  →  ( 𝑓 ‘ suc  𝑗 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑗 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 13 | 
							
								2 12
							 | 
							bitri | 
							⊢ ( 𝜓  ↔  ∀ 𝑗 ( ( 𝑗  ∈  ω  ∧  suc  𝑗  ∈  𝑛 )  →  ( 𝑓 ‘ suc  𝑗 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑗 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  |