Metamath Proof Explorer


Theorem bnj1123

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1123.4 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
bnj1123.3 𝐾 = { 𝑓 ∣ ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) }
bnj1123.1 ( 𝜂 ↔ ( ( 𝑓𝐾𝑖 ∈ dom 𝑓 ) → ( 𝑓𝑖 ) ⊆ 𝐵 ) )
bnj1123.2 ( 𝜂′[ 𝑗 / 𝑖 ] 𝜂 )
Assertion bnj1123 ( 𝜂′ ↔ ( ( 𝑓𝐾𝑗 ∈ dom 𝑓 ) → ( 𝑓𝑗 ) ⊆ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 bnj1123.4 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
2 bnj1123.3 𝐾 = { 𝑓 ∣ ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) }
3 bnj1123.1 ( 𝜂 ↔ ( ( 𝑓𝐾𝑖 ∈ dom 𝑓 ) → ( 𝑓𝑖 ) ⊆ 𝐵 ) )
4 bnj1123.2 ( 𝜂′[ 𝑗 / 𝑖 ] 𝜂 )
5 3 sbcbii ( [ 𝑗 / 𝑖 ] 𝜂[ 𝑗 / 𝑖 ] ( ( 𝑓𝐾𝑖 ∈ dom 𝑓 ) → ( 𝑓𝑖 ) ⊆ 𝐵 ) )
6 nfcv 𝑖 𝐷
7 nfv 𝑖 𝑓 Fn 𝑛
8 nfv 𝑖 𝜑
9 1 bnj1095 ( 𝜓 → ∀ 𝑖 𝜓 )
10 9 nf5i 𝑖 𝜓
11 7 8 10 nf3an 𝑖 ( 𝑓 Fn 𝑛𝜑𝜓 )
12 6 11 nfrex 𝑖𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 )
13 12 nfab 𝑖 { 𝑓 ∣ ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) }
14 2 13 nfcxfr 𝑖 𝐾
15 14 nfcri 𝑖 𝑓𝐾
16 nfv 𝑖 𝑗 ∈ dom 𝑓
17 15 16 nfan 𝑖 ( 𝑓𝐾𝑗 ∈ dom 𝑓 )
18 nfv 𝑖 ( 𝑓𝑗 ) ⊆ 𝐵
19 17 18 nfim 𝑖 ( ( 𝑓𝐾𝑗 ∈ dom 𝑓 ) → ( 𝑓𝑗 ) ⊆ 𝐵 )
20 eleq1w ( 𝑖 = 𝑗 → ( 𝑖 ∈ dom 𝑓𝑗 ∈ dom 𝑓 ) )
21 20 anbi2d ( 𝑖 = 𝑗 → ( ( 𝑓𝐾𝑖 ∈ dom 𝑓 ) ↔ ( 𝑓𝐾𝑗 ∈ dom 𝑓 ) ) )
22 fveq2 ( 𝑖 = 𝑗 → ( 𝑓𝑖 ) = ( 𝑓𝑗 ) )
23 22 sseq1d ( 𝑖 = 𝑗 → ( ( 𝑓𝑖 ) ⊆ 𝐵 ↔ ( 𝑓𝑗 ) ⊆ 𝐵 ) )
24 21 23 imbi12d ( 𝑖 = 𝑗 → ( ( ( 𝑓𝐾𝑖 ∈ dom 𝑓 ) → ( 𝑓𝑖 ) ⊆ 𝐵 ) ↔ ( ( 𝑓𝐾𝑗 ∈ dom 𝑓 ) → ( 𝑓𝑗 ) ⊆ 𝐵 ) ) )
25 19 24 sbciegf ( 𝑗 ∈ V → ( [ 𝑗 / 𝑖 ] ( ( 𝑓𝐾𝑖 ∈ dom 𝑓 ) → ( 𝑓𝑖 ) ⊆ 𝐵 ) ↔ ( ( 𝑓𝐾𝑗 ∈ dom 𝑓 ) → ( 𝑓𝑗 ) ⊆ 𝐵 ) ) )
26 25 elv ( [ 𝑗 / 𝑖 ] ( ( 𝑓𝐾𝑖 ∈ dom 𝑓 ) → ( 𝑓𝑖 ) ⊆ 𝐵 ) ↔ ( ( 𝑓𝐾𝑗 ∈ dom 𝑓 ) → ( 𝑓𝑗 ) ⊆ 𝐵 ) )
27 4 5 26 3bitri ( 𝜂′ ↔ ( ( 𝑓𝐾𝑗 ∈ dom 𝑓 ) → ( 𝑓𝑗 ) ⊆ 𝐵 ) )