Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1123.4 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
2 |
|
bnj1123.3 |
⊢ 𝐾 = { 𝑓 ∣ ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) } |
3 |
|
bnj1123.1 |
⊢ ( 𝜂 ↔ ( ( 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) ) |
4 |
|
bnj1123.2 |
⊢ ( 𝜂′ ↔ [ 𝑗 / 𝑖 ] 𝜂 ) |
5 |
3
|
sbcbii |
⊢ ( [ 𝑗 / 𝑖 ] 𝜂 ↔ [ 𝑗 / 𝑖 ] ( ( 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) ) |
6 |
|
nfcv |
⊢ Ⅎ 𝑖 𝐷 |
7 |
|
nfv |
⊢ Ⅎ 𝑖 𝑓 Fn 𝑛 |
8 |
|
nfv |
⊢ Ⅎ 𝑖 𝜑 |
9 |
1
|
bnj1095 |
⊢ ( 𝜓 → ∀ 𝑖 𝜓 ) |
10 |
9
|
nf5i |
⊢ Ⅎ 𝑖 𝜓 |
11 |
7 8 10
|
nf3an |
⊢ Ⅎ 𝑖 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) |
12 |
6 11
|
nfrex |
⊢ Ⅎ 𝑖 ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) |
13 |
12
|
nfab |
⊢ Ⅎ 𝑖 { 𝑓 ∣ ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) } |
14 |
2 13
|
nfcxfr |
⊢ Ⅎ 𝑖 𝐾 |
15 |
14
|
nfcri |
⊢ Ⅎ 𝑖 𝑓 ∈ 𝐾 |
16 |
|
nfv |
⊢ Ⅎ 𝑖 𝑗 ∈ dom 𝑓 |
17 |
15 16
|
nfan |
⊢ Ⅎ 𝑖 ( 𝑓 ∈ 𝐾 ∧ 𝑗 ∈ dom 𝑓 ) |
18 |
|
nfv |
⊢ Ⅎ 𝑖 ( 𝑓 ‘ 𝑗 ) ⊆ 𝐵 |
19 |
17 18
|
nfim |
⊢ Ⅎ 𝑖 ( ( 𝑓 ∈ 𝐾 ∧ 𝑗 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑗 ) ⊆ 𝐵 ) |
20 |
|
eleq1w |
⊢ ( 𝑖 = 𝑗 → ( 𝑖 ∈ dom 𝑓 ↔ 𝑗 ∈ dom 𝑓 ) ) |
21 |
20
|
anbi2d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓 ) ↔ ( 𝑓 ∈ 𝐾 ∧ 𝑗 ∈ dom 𝑓 ) ) ) |
22 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑓 ‘ 𝑖 ) = ( 𝑓 ‘ 𝑗 ) ) |
23 |
22
|
sseq1d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ↔ ( 𝑓 ‘ 𝑗 ) ⊆ 𝐵 ) ) |
24 |
21 23
|
imbi12d |
⊢ ( 𝑖 = 𝑗 → ( ( ( 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) ↔ ( ( 𝑓 ∈ 𝐾 ∧ 𝑗 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑗 ) ⊆ 𝐵 ) ) ) |
25 |
19 24
|
sbciegf |
⊢ ( 𝑗 ∈ V → ( [ 𝑗 / 𝑖 ] ( ( 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) ↔ ( ( 𝑓 ∈ 𝐾 ∧ 𝑗 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑗 ) ⊆ 𝐵 ) ) ) |
26 |
25
|
elv |
⊢ ( [ 𝑗 / 𝑖 ] ( ( 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) ↔ ( ( 𝑓 ∈ 𝐾 ∧ 𝑗 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑗 ) ⊆ 𝐵 ) ) |
27 |
4 5 26
|
3bitri |
⊢ ( 𝜂′ ↔ ( ( 𝑓 ∈ 𝐾 ∧ 𝑗 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑗 ) ⊆ 𝐵 ) ) |