Metamath Proof Explorer


Theorem bnj1131

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1131.1 ( 𝜑 → ∀ 𝑥 𝜑 )
bnj1131.2 𝑥 𝜑
Assertion bnj1131 𝜑

Proof

Step Hyp Ref Expression
1 bnj1131.1 ( 𝜑 → ∀ 𝑥 𝜑 )
2 bnj1131.2 𝑥 𝜑
3 1 19.9h ( ∃ 𝑥 𝜑𝜑 )
4 2 3 mpbi 𝜑