Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1133.3 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
2 |
|
bnj1133.5 |
⊢ ( 𝜒 ↔ ( 𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
3 |
|
bnj1133.7 |
⊢ ( 𝜏 ↔ ∀ 𝑗 ∈ 𝑛 ( 𝑗 E 𝑖 → [ 𝑗 / 𝑖 ] 𝜃 ) ) |
4 |
|
bnj1133.8 |
⊢ ( ( 𝑖 ∈ 𝑛 ∧ 𝜏 ) → 𝜃 ) |
5 |
1
|
bnj1071 |
⊢ ( 𝑛 ∈ 𝐷 → E Fr 𝑛 ) |
6 |
2 5
|
bnj769 |
⊢ ( 𝜒 → E Fr 𝑛 ) |
7 |
|
impexp |
⊢ ( ( ( 𝑖 ∈ 𝑛 ∧ 𝜏 ) → 𝜃 ) ↔ ( 𝑖 ∈ 𝑛 → ( 𝜏 → 𝜃 ) ) ) |
8 |
7
|
bicomi |
⊢ ( ( 𝑖 ∈ 𝑛 → ( 𝜏 → 𝜃 ) ) ↔ ( ( 𝑖 ∈ 𝑛 ∧ 𝜏 ) → 𝜃 ) ) |
9 |
8
|
albii |
⊢ ( ∀ 𝑖 ( 𝑖 ∈ 𝑛 → ( 𝜏 → 𝜃 ) ) ↔ ∀ 𝑖 ( ( 𝑖 ∈ 𝑛 ∧ 𝜏 ) → 𝜃 ) ) |
10 |
9 4
|
mpgbir |
⊢ ∀ 𝑖 ( 𝑖 ∈ 𝑛 → ( 𝜏 → 𝜃 ) ) |
11 |
|
df-ral |
⊢ ( ∀ 𝑖 ∈ 𝑛 ( 𝜏 → 𝜃 ) ↔ ∀ 𝑖 ( 𝑖 ∈ 𝑛 → ( 𝜏 → 𝜃 ) ) ) |
12 |
10 11
|
mpbir |
⊢ ∀ 𝑖 ∈ 𝑛 ( 𝜏 → 𝜃 ) |
13 |
|
vex |
⊢ 𝑛 ∈ V |
14 |
13 3
|
bnj110 |
⊢ ( ( E Fr 𝑛 ∧ ∀ 𝑖 ∈ 𝑛 ( 𝜏 → 𝜃 ) ) → ∀ 𝑖 ∈ 𝑛 𝜃 ) |
15 |
6 12 14
|
sylancl |
⊢ ( 𝜒 → ∀ 𝑖 ∈ 𝑛 𝜃 ) |