Metamath Proof Explorer


Theorem bnj1133

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1133.3 𝐷 = ( ω ∖ { ∅ } )
bnj1133.5 ( 𝜒 ↔ ( 𝑛𝐷𝑓 Fn 𝑛𝜑𝜓 ) )
bnj1133.7 ( 𝜏 ↔ ∀ 𝑗𝑛 ( 𝑗 E 𝑖[ 𝑗 / 𝑖 ] 𝜃 ) )
bnj1133.8 ( ( 𝑖𝑛𝜏 ) → 𝜃 )
Assertion bnj1133 ( 𝜒 → ∀ 𝑖𝑛 𝜃 )

Proof

Step Hyp Ref Expression
1 bnj1133.3 𝐷 = ( ω ∖ { ∅ } )
2 bnj1133.5 ( 𝜒 ↔ ( 𝑛𝐷𝑓 Fn 𝑛𝜑𝜓 ) )
3 bnj1133.7 ( 𝜏 ↔ ∀ 𝑗𝑛 ( 𝑗 E 𝑖[ 𝑗 / 𝑖 ] 𝜃 ) )
4 bnj1133.8 ( ( 𝑖𝑛𝜏 ) → 𝜃 )
5 1 bnj1071 ( 𝑛𝐷 → E Fr 𝑛 )
6 2 5 bnj769 ( 𝜒 → E Fr 𝑛 )
7 impexp ( ( ( 𝑖𝑛𝜏 ) → 𝜃 ) ↔ ( 𝑖𝑛 → ( 𝜏𝜃 ) ) )
8 7 bicomi ( ( 𝑖𝑛 → ( 𝜏𝜃 ) ) ↔ ( ( 𝑖𝑛𝜏 ) → 𝜃 ) )
9 8 albii ( ∀ 𝑖 ( 𝑖𝑛 → ( 𝜏𝜃 ) ) ↔ ∀ 𝑖 ( ( 𝑖𝑛𝜏 ) → 𝜃 ) )
10 9 4 mpgbir 𝑖 ( 𝑖𝑛 → ( 𝜏𝜃 ) )
11 df-ral ( ∀ 𝑖𝑛 ( 𝜏𝜃 ) ↔ ∀ 𝑖 ( 𝑖𝑛 → ( 𝜏𝜃 ) ) )
12 10 11 mpbir 𝑖𝑛 ( 𝜏𝜃 )
13 vex 𝑛 ∈ V
14 13 3 bnj110 ( ( E Fr 𝑛 ∧ ∀ 𝑖𝑛 ( 𝜏𝜃 ) ) → ∀ 𝑖𝑛 𝜃 )
15 6 12 14 sylancl ( 𝜒 → ∀ 𝑖𝑛 𝜃 )