Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1136.1 |
⊢ 𝐵 = ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
2 |
|
bnj1136.2 |
⊢ ( 𝜃 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) |
3 |
|
bnj1136.3 |
⊢ ( 𝜏 ↔ ( 𝐵 ∈ V ∧ TrFo ( 𝐵 , 𝐴 , 𝑅 ) ∧ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) ) |
4 |
2
|
biimpri |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → 𝜃 ) |
5 |
|
bnj1148 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → pred ( 𝑋 , 𝐴 , 𝑅 ) ∈ V ) |
6 |
|
bnj893 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → trCl ( 𝑋 , 𝐴 , 𝑅 ) ∈ V ) |
7 |
|
simp1 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) → 𝑅 FrSe 𝐴 ) |
8 |
|
bnj1127 |
⊢ ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → 𝑦 ∈ 𝐴 ) |
9 |
8
|
3ad2ant3 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) → 𝑦 ∈ 𝐴 ) |
10 |
|
bnj893 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑦 ∈ 𝐴 ) → trCl ( 𝑦 , 𝐴 , 𝑅 ) ∈ V ) |
11 |
7 9 10
|
syl2anc |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) → trCl ( 𝑦 , 𝐴 , 𝑅 ) ∈ V ) |
12 |
11
|
3expia |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → trCl ( 𝑦 , 𝐴 , 𝑅 ) ∈ V ) ) |
13 |
12
|
ralrimiv |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ∈ V ) |
14 |
|
iunexg |
⊢ ( ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ∈ V ∧ ∀ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ∈ V ) → ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ∈ V ) |
15 |
6 13 14
|
syl2anc |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ∈ V ) |
16 |
5 15
|
bnj1149 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ∈ V ) |
17 |
1 16
|
eqeltrid |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → 𝐵 ∈ V ) |
18 |
1
|
bnj1137 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → TrFo ( 𝐵 , 𝐴 , 𝑅 ) ) |
19 |
1
|
bnj931 |
⊢ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 |
20 |
19
|
a1i |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) |
21 |
17 18 20 3
|
syl3anbrc |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → 𝜏 ) |
22 |
2 3
|
bnj1124 |
⊢ ( ( 𝜃 ∧ 𝜏 ) → trCl ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) |
23 |
4 21 22
|
syl2anc |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → trCl ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) |
24 |
|
bnj906 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) |
25 |
|
bnj1125 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) → trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) |
26 |
25
|
3expia |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) |
27 |
26
|
ralrimiv |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) |
28 |
|
ss2iun |
⊢ ( ∀ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑋 , 𝐴 , 𝑅 ) ) |
29 |
|
bnj1143 |
⊢ ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑋 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) |
30 |
28 29
|
sstrdi |
⊢ ( ∀ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) |
31 |
27 30
|
syl |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) |
32 |
24 31
|
unssd |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) |
33 |
1 32
|
eqsstrid |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → 𝐵 ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) |
34 |
23 33
|
eqssd |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → trCl ( 𝑋 , 𝐴 , 𝑅 ) = 𝐵 ) |