Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1145.1 |
⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
2 |
|
bnj1145.2 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
3 |
|
bnj1145.3 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
4 |
|
bnj1145.4 |
⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) } |
5 |
|
bnj1145.5 |
⊢ ( 𝜒 ↔ ( 𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
6 |
|
bnj1145.6 |
⊢ ( 𝜃 ↔ ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒 ) ∧ ( 𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ) ) ) |
7 |
1 2 3 4
|
bnj882 |
⊢ trCl ( 𝑋 , 𝐴 , 𝑅 ) = ∪ 𝑓 ∈ 𝐵 ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) |
8 |
|
ss2iun |
⊢ ( ∀ 𝑓 ∈ 𝐵 ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) ⊆ 𝐴 → ∪ 𝑓 ∈ 𝐵 ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) ⊆ ∪ 𝑓 ∈ 𝐵 𝐴 ) |
9 |
5 4
|
bnj1083 |
⊢ ( 𝑓 ∈ 𝐵 ↔ ∃ 𝑛 𝜒 ) |
10 |
2
|
bnj1095 |
⊢ ( 𝜓 → ∀ 𝑖 𝜓 ) |
11 |
10 5
|
bnj1096 |
⊢ ( 𝜒 → ∀ 𝑖 𝜒 ) |
12 |
3
|
bnj1098 |
⊢ ∃ 𝑗 ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) → ( 𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ) ) |
13 |
5
|
bnj1232 |
⊢ ( 𝜒 → 𝑛 ∈ 𝐷 ) |
14 |
13
|
3anim3i |
⊢ ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒 ) → ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) ) |
15 |
12 14
|
bnj1101 |
⊢ ∃ 𝑗 ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒 ) → ( 𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ) ) |
16 |
|
ancl |
⊢ ( ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒 ) → ( 𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ) ) → ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒 ) → ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒 ) ∧ ( 𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ) ) ) ) |
17 |
15 16
|
bnj101 |
⊢ ∃ 𝑗 ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒 ) → ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒 ) ∧ ( 𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ) ) ) |
18 |
6
|
imbi2i |
⊢ ( ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒 ) → 𝜃 ) ↔ ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒 ) → ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒 ) ∧ ( 𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ) ) ) ) |
19 |
18
|
exbii |
⊢ ( ∃ 𝑗 ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒 ) → 𝜃 ) ↔ ∃ 𝑗 ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒 ) → ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒 ) ∧ ( 𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ) ) ) ) |
20 |
17 19
|
mpbir |
⊢ ∃ 𝑗 ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒 ) → 𝜃 ) |
21 |
|
bnj213 |
⊢ pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝐴 |
22 |
21
|
bnj226 |
⊢ ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝐴 |
23 |
|
simpr |
⊢ ( ( 𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ) → 𝑖 = suc 𝑗 ) |
24 |
6 23
|
simplbiim |
⊢ ( 𝜃 → 𝑖 = suc 𝑗 ) |
25 |
|
simp2 |
⊢ ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒 ) → 𝑖 ∈ 𝑛 ) |
26 |
13
|
3ad2ant3 |
⊢ ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒 ) → 𝑛 ∈ 𝐷 ) |
27 |
3
|
bnj923 |
⊢ ( 𝑛 ∈ 𝐷 → 𝑛 ∈ ω ) |
28 |
|
elnn |
⊢ ( ( 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ ω ) → 𝑖 ∈ ω ) |
29 |
27 28
|
sylan2 |
⊢ ( ( 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) → 𝑖 ∈ ω ) |
30 |
25 26 29
|
syl2anc |
⊢ ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒 ) → 𝑖 ∈ ω ) |
31 |
6 30
|
bnj832 |
⊢ ( 𝜃 → 𝑖 ∈ ω ) |
32 |
|
vex |
⊢ 𝑗 ∈ V |
33 |
32
|
bnj216 |
⊢ ( 𝑖 = suc 𝑗 → 𝑗 ∈ 𝑖 ) |
34 |
|
elnn |
⊢ ( ( 𝑗 ∈ 𝑖 ∧ 𝑖 ∈ ω ) → 𝑗 ∈ ω ) |
35 |
33 34
|
sylan |
⊢ ( ( 𝑖 = suc 𝑗 ∧ 𝑖 ∈ ω ) → 𝑗 ∈ ω ) |
36 |
24 31 35
|
syl2anc |
⊢ ( 𝜃 → 𝑗 ∈ ω ) |
37 |
6 25
|
bnj832 |
⊢ ( 𝜃 → 𝑖 ∈ 𝑛 ) |
38 |
24 37
|
eqeltrrd |
⊢ ( 𝜃 → suc 𝑗 ∈ 𝑛 ) |
39 |
2
|
bnj589 |
⊢ ( 𝜓 ↔ ∀ 𝑗 ∈ ω ( suc 𝑗 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑗 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
40 |
39
|
biimpi |
⊢ ( 𝜓 → ∀ 𝑗 ∈ ω ( suc 𝑗 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑗 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
41 |
40
|
bnj708 |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) → ∀ 𝑗 ∈ ω ( suc 𝑗 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑗 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
42 |
|
rsp |
⊢ ( ∀ 𝑗 ∈ ω ( suc 𝑗 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑗 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) → ( 𝑗 ∈ ω → ( suc 𝑗 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑗 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
43 |
41 42
|
syl |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) → ( 𝑗 ∈ ω → ( suc 𝑗 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑗 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
44 |
5 43
|
sylbi |
⊢ ( 𝜒 → ( 𝑗 ∈ ω → ( suc 𝑗 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑗 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
45 |
44
|
3ad2ant3 |
⊢ ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒 ) → ( 𝑗 ∈ ω → ( suc 𝑗 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑗 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
46 |
6 45
|
bnj832 |
⊢ ( 𝜃 → ( 𝑗 ∈ ω → ( suc 𝑗 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑗 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
47 |
36 38 46
|
mp2d |
⊢ ( 𝜃 → ( 𝑓 ‘ suc 𝑗 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
48 |
|
fveqeq2 |
⊢ ( 𝑖 = suc 𝑗 → ( ( 𝑓 ‘ 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ↔ ( 𝑓 ‘ suc 𝑗 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
49 |
24 48
|
syl |
⊢ ( 𝜃 → ( ( 𝑓 ‘ 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ↔ ( 𝑓 ‘ suc 𝑗 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
50 |
47 49
|
mpbird |
⊢ ( 𝜃 → ( 𝑓 ‘ 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
51 |
22 50
|
bnj1262 |
⊢ ( 𝜃 → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐴 ) |
52 |
20 51
|
bnj1023 |
⊢ ∃ 𝑗 ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒 ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐴 ) |
53 |
|
3anass |
⊢ ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒 ) ↔ ( 𝑖 ≠ ∅ ∧ ( 𝑖 ∈ 𝑛 ∧ 𝜒 ) ) ) |
54 |
53
|
imbi1i |
⊢ ( ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒 ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐴 ) ↔ ( ( 𝑖 ≠ ∅ ∧ ( 𝑖 ∈ 𝑛 ∧ 𝜒 ) ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐴 ) ) |
55 |
54
|
exbii |
⊢ ( ∃ 𝑗 ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒 ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐴 ) ↔ ∃ 𝑗 ( ( 𝑖 ≠ ∅ ∧ ( 𝑖 ∈ 𝑛 ∧ 𝜒 ) ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐴 ) ) |
56 |
52 55
|
mpbi |
⊢ ∃ 𝑗 ( ( 𝑖 ≠ ∅ ∧ ( 𝑖 ∈ 𝑛 ∧ 𝜒 ) ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐴 ) |
57 |
1
|
biimpi |
⊢ ( 𝜑 → ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
58 |
5 57
|
bnj771 |
⊢ ( 𝜒 → ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
59 |
|
fveq2 |
⊢ ( 𝑖 = ∅ → ( 𝑓 ‘ 𝑖 ) = ( 𝑓 ‘ ∅ ) ) |
60 |
|
bnj213 |
⊢ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐴 |
61 |
|
sseq1 |
⊢ ( ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) → ( ( 𝑓 ‘ ∅ ) ⊆ 𝐴 ↔ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐴 ) ) |
62 |
60 61
|
mpbiri |
⊢ ( ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) → ( 𝑓 ‘ ∅ ) ⊆ 𝐴 ) |
63 |
|
sseq1 |
⊢ ( ( 𝑓 ‘ 𝑖 ) = ( 𝑓 ‘ ∅ ) → ( ( 𝑓 ‘ 𝑖 ) ⊆ 𝐴 ↔ ( 𝑓 ‘ ∅ ) ⊆ 𝐴 ) ) |
64 |
63
|
biimpar |
⊢ ( ( ( 𝑓 ‘ 𝑖 ) = ( 𝑓 ‘ ∅ ) ∧ ( 𝑓 ‘ ∅ ) ⊆ 𝐴 ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐴 ) |
65 |
59 62 64
|
syl2an |
⊢ ( ( 𝑖 = ∅ ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐴 ) |
66 |
58 65
|
sylan2 |
⊢ ( ( 𝑖 = ∅ ∧ 𝜒 ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐴 ) |
67 |
66
|
adantrl |
⊢ ( ( 𝑖 = ∅ ∧ ( 𝑖 ∈ 𝑛 ∧ 𝜒 ) ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐴 ) |
68 |
56 67
|
bnj1109 |
⊢ ∃ 𝑗 ( ( 𝑖 ∈ 𝑛 ∧ 𝜒 ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐴 ) |
69 |
|
19.9v |
⊢ ( ∃ 𝑗 ( ( 𝑖 ∈ 𝑛 ∧ 𝜒 ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐴 ) ↔ ( ( 𝑖 ∈ 𝑛 ∧ 𝜒 ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐴 ) ) |
70 |
68 69
|
mpbi |
⊢ ( ( 𝑖 ∈ 𝑛 ∧ 𝜒 ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐴 ) |
71 |
70
|
expcom |
⊢ ( 𝜒 → ( 𝑖 ∈ 𝑛 → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐴 ) ) |
72 |
|
fndm |
⊢ ( 𝑓 Fn 𝑛 → dom 𝑓 = 𝑛 ) |
73 |
5 72
|
bnj770 |
⊢ ( 𝜒 → dom 𝑓 = 𝑛 ) |
74 |
|
eleq2 |
⊢ ( dom 𝑓 = 𝑛 → ( 𝑖 ∈ dom 𝑓 ↔ 𝑖 ∈ 𝑛 ) ) |
75 |
74
|
imbi1d |
⊢ ( dom 𝑓 = 𝑛 → ( ( 𝑖 ∈ dom 𝑓 → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐴 ) ↔ ( 𝑖 ∈ 𝑛 → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐴 ) ) ) |
76 |
73 75
|
syl |
⊢ ( 𝜒 → ( ( 𝑖 ∈ dom 𝑓 → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐴 ) ↔ ( 𝑖 ∈ 𝑛 → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐴 ) ) ) |
77 |
71 76
|
mpbird |
⊢ ( 𝜒 → ( 𝑖 ∈ dom 𝑓 → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐴 ) ) |
78 |
11 77
|
hbralrimi |
⊢ ( 𝜒 → ∀ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) ⊆ 𝐴 ) |
79 |
78
|
exlimiv |
⊢ ( ∃ 𝑛 𝜒 → ∀ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) ⊆ 𝐴 ) |
80 |
9 79
|
sylbi |
⊢ ( 𝑓 ∈ 𝐵 → ∀ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) ⊆ 𝐴 ) |
81 |
|
ss2iun |
⊢ ( ∀ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) ⊆ 𝐴 → ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) ⊆ ∪ 𝑖 ∈ dom 𝑓 𝐴 ) |
82 |
|
bnj1143 |
⊢ ∪ 𝑖 ∈ dom 𝑓 𝐴 ⊆ 𝐴 |
83 |
81 82
|
sstrdi |
⊢ ( ∀ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) ⊆ 𝐴 → ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) ⊆ 𝐴 ) |
84 |
80 83
|
syl |
⊢ ( 𝑓 ∈ 𝐵 → ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) ⊆ 𝐴 ) |
85 |
8 84
|
mprg |
⊢ ∪ 𝑓 ∈ 𝐵 ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) ⊆ ∪ 𝑓 ∈ 𝐵 𝐴 |
86 |
4
|
bnj1317 |
⊢ ( 𝑤 ∈ 𝐵 → ∀ 𝑓 𝑤 ∈ 𝐵 ) |
87 |
86
|
bnj1146 |
⊢ ∪ 𝑓 ∈ 𝐵 𝐴 ⊆ 𝐴 |
88 |
85 87
|
sstri |
⊢ ∪ 𝑓 ∈ 𝐵 ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) ⊆ 𝐴 |
89 |
7 88
|
eqsstri |
⊢ trCl ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐴 |