Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1146.1 |
⊢ ( 𝑦 ∈ 𝐴 → ∀ 𝑥 𝑦 ∈ 𝐴 ) |
2 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) |
3 |
1
|
nf5i |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐴 |
4 |
|
nfv |
⊢ Ⅎ 𝑥 𝑤 ∈ 𝐵 |
5 |
3 4
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) |
6 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
7 |
6
|
anbi1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) ) |
8 |
2 5 7
|
cbvexv1 |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) |
9 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑤 ∈ 𝐵 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) |
10 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ 𝐴 𝑤 ∈ 𝐵 ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) |
11 |
8 9 10
|
3bitr4i |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑤 ∈ 𝐵 ↔ ∃ 𝑦 ∈ 𝐴 𝑤 ∈ 𝐵 ) |
12 |
11
|
abbii |
⊢ { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 ∈ 𝐵 } = { 𝑤 ∣ ∃ 𝑦 ∈ 𝐴 𝑤 ∈ 𝐵 } |
13 |
|
df-iun |
⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 ∈ 𝐵 } |
14 |
|
df-iun |
⊢ ∪ 𝑦 ∈ 𝐴 𝐵 = { 𝑤 ∣ ∃ 𝑦 ∈ 𝐴 𝑤 ∈ 𝐵 } |
15 |
12 13 14
|
3eqtr4i |
⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐵 |
16 |
|
bnj1143 |
⊢ ∪ 𝑦 ∈ 𝐴 𝐵 ⊆ 𝐵 |
17 |
15 16
|
eqsstri |
⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵 |