Metamath Proof Explorer


Theorem bnj1146

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj1146.1 ( 𝑦𝐴 → ∀ 𝑥 𝑦𝐴 )
Assertion bnj1146 𝑥𝐴 𝐵𝐵

Proof

Step Hyp Ref Expression
1 bnj1146.1 ( 𝑦𝐴 → ∀ 𝑥 𝑦𝐴 )
2 nfv 𝑦 ( 𝑥𝐴𝑤𝐵 )
3 1 nf5i 𝑥 𝑦𝐴
4 nfv 𝑥 𝑤𝐵
5 3 4 nfan 𝑥 ( 𝑦𝐴𝑤𝐵 )
6 eleq1w ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐴 ) )
7 6 anbi1d ( 𝑥 = 𝑦 → ( ( 𝑥𝐴𝑤𝐵 ) ↔ ( 𝑦𝐴𝑤𝐵 ) ) )
8 2 5 7 cbvexv1 ( ∃ 𝑥 ( 𝑥𝐴𝑤𝐵 ) ↔ ∃ 𝑦 ( 𝑦𝐴𝑤𝐵 ) )
9 df-rex ( ∃ 𝑥𝐴 𝑤𝐵 ↔ ∃ 𝑥 ( 𝑥𝐴𝑤𝐵 ) )
10 df-rex ( ∃ 𝑦𝐴 𝑤𝐵 ↔ ∃ 𝑦 ( 𝑦𝐴𝑤𝐵 ) )
11 8 9 10 3bitr4i ( ∃ 𝑥𝐴 𝑤𝐵 ↔ ∃ 𝑦𝐴 𝑤𝐵 )
12 11 abbii { 𝑤 ∣ ∃ 𝑥𝐴 𝑤𝐵 } = { 𝑤 ∣ ∃ 𝑦𝐴 𝑤𝐵 }
13 df-iun 𝑥𝐴 𝐵 = { 𝑤 ∣ ∃ 𝑥𝐴 𝑤𝐵 }
14 df-iun 𝑦𝐴 𝐵 = { 𝑤 ∣ ∃ 𝑦𝐴 𝑤𝐵 }
15 12 13 14 3eqtr4i 𝑥𝐴 𝐵 = 𝑦𝐴 𝐵
16 bnj1143 𝑦𝐴 𝐵𝐵
17 15 16 eqsstri 𝑥𝐴 𝐵𝐵