Metamath Proof Explorer


Theorem bnj1148

Description: Property of _pred . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj1148 ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → pred ( 𝑋 , 𝐴 , 𝑅 ) ∈ V )

Proof

Step Hyp Ref Expression
1 elisset ( 𝑋𝐴 → ∃ 𝑥 𝑥 = 𝑋 )
2 1 adantl ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ∃ 𝑥 𝑥 = 𝑋 )
3 bnj93 ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → pred ( 𝑥 , 𝐴 , 𝑅 ) ∈ V )
4 eleq1 ( 𝑥 = 𝑋 → ( 𝑥𝐴𝑋𝐴 ) )
5 4 anbi2d ( 𝑥 = 𝑋 → ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) ↔ ( 𝑅 FrSe 𝐴𝑋𝐴 ) ) )
6 bnj602 ( 𝑥 = 𝑋 → pred ( 𝑥 , 𝐴 , 𝑅 ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
7 6 eleq1d ( 𝑥 = 𝑋 → ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∈ V ↔ pred ( 𝑋 , 𝐴 , 𝑅 ) ∈ V ) )
8 5 7 imbi12d ( 𝑥 = 𝑋 → ( ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → pred ( 𝑥 , 𝐴 , 𝑅 ) ∈ V ) ↔ ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → pred ( 𝑋 , 𝐴 , 𝑅 ) ∈ V ) ) )
9 3 8 mpbii ( 𝑥 = 𝑋 → ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → pred ( 𝑋 , 𝐴 , 𝑅 ) ∈ V ) )
10 2 9 bnj593 ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ∃ 𝑥 ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → pred ( 𝑋 , 𝐴 , 𝑅 ) ∈ V ) )
11 10 bnj937 ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → pred ( 𝑋 , 𝐴 , 𝑅 ) ∈ V ) )
12 11 pm2.43i ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → pred ( 𝑋 , 𝐴 , 𝑅 ) ∈ V )