Step |
Hyp |
Ref |
Expression |
1 |
|
elisset |
⊢ ( 𝑋 ∈ 𝐴 → ∃ 𝑥 𝑥 = 𝑋 ) |
2 |
1
|
adantl |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∃ 𝑥 𝑥 = 𝑋 ) |
3 |
|
bnj93 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → pred ( 𝑥 , 𝐴 , 𝑅 ) ∈ V ) |
4 |
|
eleq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴 ) ) |
5 |
4
|
anbi2d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) ) |
6 |
|
bnj602 |
⊢ ( 𝑥 = 𝑋 → pred ( 𝑥 , 𝐴 , 𝑅 ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
7 |
6
|
eleq1d |
⊢ ( 𝑥 = 𝑋 → ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∈ V ↔ pred ( 𝑋 , 𝐴 , 𝑅 ) ∈ V ) ) |
8 |
5 7
|
imbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → pred ( 𝑥 , 𝐴 , 𝑅 ) ∈ V ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → pred ( 𝑋 , 𝐴 , 𝑅 ) ∈ V ) ) ) |
9 |
3 8
|
mpbii |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → pred ( 𝑋 , 𝐴 , 𝑅 ) ∈ V ) ) |
10 |
2 9
|
bnj593 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∃ 𝑥 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → pred ( 𝑋 , 𝐴 , 𝑅 ) ∈ V ) ) |
11 |
10
|
bnj937 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → pred ( 𝑋 , 𝐴 , 𝑅 ) ∈ V ) ) |
12 |
11
|
pm2.43i |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → pred ( 𝑋 , 𝐴 , 𝑅 ) ∈ V ) |