Step |
Hyp |
Ref |
Expression |
1 |
|
bnj658 |
⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ∧ 𝐵 ∈ V ) → ( 𝑅 Fr 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) ) |
2 |
|
elisset |
⊢ ( 𝐵 ∈ V → ∃ 𝑏 𝑏 = 𝐵 ) |
3 |
2
|
bnj708 |
⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ∧ 𝐵 ∈ V ) → ∃ 𝑏 𝑏 = 𝐵 ) |
4 |
|
df-fr |
⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑏 ( ( 𝑏 ⊆ 𝐴 ∧ 𝑏 ≠ ∅ ) → ∃ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ¬ 𝑦 𝑅 𝑥 ) ) |
5 |
4
|
biimpi |
⊢ ( 𝑅 Fr 𝐴 → ∀ 𝑏 ( ( 𝑏 ⊆ 𝐴 ∧ 𝑏 ≠ ∅ ) → ∃ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ¬ 𝑦 𝑅 𝑥 ) ) |
6 |
5
|
19.21bi |
⊢ ( 𝑅 Fr 𝐴 → ( ( 𝑏 ⊆ 𝐴 ∧ 𝑏 ≠ ∅ ) → ∃ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ¬ 𝑦 𝑅 𝑥 ) ) |
7 |
6
|
3impib |
⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑏 ⊆ 𝐴 ∧ 𝑏 ≠ ∅ ) → ∃ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ¬ 𝑦 𝑅 𝑥 ) |
8 |
|
sseq1 |
⊢ ( 𝑏 = 𝐵 → ( 𝑏 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐴 ) ) |
9 |
|
neeq1 |
⊢ ( 𝑏 = 𝐵 → ( 𝑏 ≠ ∅ ↔ 𝐵 ≠ ∅ ) ) |
10 |
8 9
|
3anbi23d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝑅 Fr 𝐴 ∧ 𝑏 ⊆ 𝐴 ∧ 𝑏 ≠ ∅ ) ↔ ( 𝑅 Fr 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) ) ) |
11 |
|
raleq |
⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑦 ∈ 𝑏 ¬ 𝑦 𝑅 𝑥 ↔ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) ) |
12 |
11
|
rexeqbi1dv |
⊢ ( 𝑏 = 𝐵 → ( ∃ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ¬ 𝑦 𝑅 𝑥 ↔ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) ) |
13 |
10 12
|
imbi12d |
⊢ ( 𝑏 = 𝐵 → ( ( ( 𝑅 Fr 𝐴 ∧ 𝑏 ⊆ 𝐴 ∧ 𝑏 ≠ ∅ ) → ∃ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ¬ 𝑦 𝑅 𝑥 ) ↔ ( ( 𝑅 Fr 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) ) ) |
14 |
7 13
|
mpbii |
⊢ ( 𝑏 = 𝐵 → ( ( 𝑅 Fr 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) ) |
15 |
3 14
|
bnj593 |
⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ∧ 𝐵 ∈ V ) → ∃ 𝑏 ( ( 𝑅 Fr 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) ) |
16 |
15
|
bnj937 |
⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ∧ 𝐵 ∈ V ) → ( ( 𝑅 Fr 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) ) |
17 |
1 16
|
mpd |
⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ∧ 𝐵 ∈ V ) → ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) |