Metamath Proof Explorer


Theorem bnj1154

Description: Property of Fr . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj1154 ( ( 𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅ ∧ 𝐵 ∈ V ) → ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 )

Proof

Step Hyp Ref Expression
1 bnj658 ( ( 𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅ ∧ 𝐵 ∈ V ) → ( 𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅ ) )
2 elisset ( 𝐵 ∈ V → ∃ 𝑏 𝑏 = 𝐵 )
3 2 bnj708 ( ( 𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅ ∧ 𝐵 ∈ V ) → ∃ 𝑏 𝑏 = 𝐵 )
4 df-fr ( 𝑅 Fr 𝐴 ↔ ∀ 𝑏 ( ( 𝑏𝐴𝑏 ≠ ∅ ) → ∃ 𝑥𝑏𝑦𝑏 ¬ 𝑦 𝑅 𝑥 ) )
5 4 biimpi ( 𝑅 Fr 𝐴 → ∀ 𝑏 ( ( 𝑏𝐴𝑏 ≠ ∅ ) → ∃ 𝑥𝑏𝑦𝑏 ¬ 𝑦 𝑅 𝑥 ) )
6 5 19.21bi ( 𝑅 Fr 𝐴 → ( ( 𝑏𝐴𝑏 ≠ ∅ ) → ∃ 𝑥𝑏𝑦𝑏 ¬ 𝑦 𝑅 𝑥 ) )
7 6 3impib ( ( 𝑅 Fr 𝐴𝑏𝐴𝑏 ≠ ∅ ) → ∃ 𝑥𝑏𝑦𝑏 ¬ 𝑦 𝑅 𝑥 )
8 sseq1 ( 𝑏 = 𝐵 → ( 𝑏𝐴𝐵𝐴 ) )
9 neeq1 ( 𝑏 = 𝐵 → ( 𝑏 ≠ ∅ ↔ 𝐵 ≠ ∅ ) )
10 8 9 3anbi23d ( 𝑏 = 𝐵 → ( ( 𝑅 Fr 𝐴𝑏𝐴𝑏 ≠ ∅ ) ↔ ( 𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅ ) ) )
11 raleq ( 𝑏 = 𝐵 → ( ∀ 𝑦𝑏 ¬ 𝑦 𝑅 𝑥 ↔ ∀ 𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ) )
12 11 rexeqbi1dv ( 𝑏 = 𝐵 → ( ∃ 𝑥𝑏𝑦𝑏 ¬ 𝑦 𝑅 𝑥 ↔ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ) )
13 10 12 imbi12d ( 𝑏 = 𝐵 → ( ( ( 𝑅 Fr 𝐴𝑏𝐴𝑏 ≠ ∅ ) → ∃ 𝑥𝑏𝑦𝑏 ¬ 𝑦 𝑅 𝑥 ) ↔ ( ( 𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅ ) → ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ) ) )
14 7 13 mpbii ( 𝑏 = 𝐵 → ( ( 𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅ ) → ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ) )
15 3 14 bnj593 ( ( 𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅ ∧ 𝐵 ∈ V ) → ∃ 𝑏 ( ( 𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅ ) → ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ) )
16 15 bnj937 ( ( 𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅ ∧ 𝐵 ∈ V ) → ( ( 𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅ ) → ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ) )
17 1 16 mpd ( ( 𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅ ∧ 𝐵 ∈ V ) → ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 )