Metamath Proof Explorer


Theorem bnj1171

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1171.13 ( ( 𝜑𝜓 ) → 𝐵𝐴 )
bnj1171.129 𝑧𝑤 ( ( 𝜑𝜓 ) → ( 𝑧𝐵 ∧ ( 𝑤𝐴 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤𝐵 ) ) ) )
Assertion bnj1171 𝑧𝑤 ( ( 𝜑𝜓 ) → ( 𝑧𝐵 ∧ ( 𝑤𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) )

Proof

Step Hyp Ref Expression
1 bnj1171.13 ( ( 𝜑𝜓 ) → 𝐵𝐴 )
2 bnj1171.129 𝑧𝑤 ( ( 𝜑𝜓 ) → ( 𝑧𝐵 ∧ ( 𝑤𝐴 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤𝐵 ) ) ) )
3 1 sseld ( ( 𝜑𝜓 ) → ( 𝑤𝐵𝑤𝐴 ) )
4 3 pm4.71rd ( ( 𝜑𝜓 ) → ( 𝑤𝐵 ↔ ( 𝑤𝐴𝑤𝐵 ) ) )
5 4 imbi1d ( ( 𝜑𝜓 ) → ( ( 𝑤𝐵 → ¬ 𝑤 𝑅 𝑧 ) ↔ ( ( 𝑤𝐴𝑤𝐵 ) → ¬ 𝑤 𝑅 𝑧 ) ) )
6 impexp ( ( ( 𝑤𝐴𝑤𝐵 ) → ¬ 𝑤 𝑅 𝑧 ) ↔ ( 𝑤𝐴 → ( 𝑤𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) )
7 5 6 bitrdi ( ( 𝜑𝜓 ) → ( ( 𝑤𝐵 → ¬ 𝑤 𝑅 𝑧 ) ↔ ( 𝑤𝐴 → ( 𝑤𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ) )
8 con2b ( ( 𝑤 𝑅 𝑧 → ¬ 𝑤𝐵 ) ↔ ( 𝑤𝐵 → ¬ 𝑤 𝑅 𝑧 ) )
9 8 imbi2i ( ( 𝑤𝐴 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤𝐵 ) ) ↔ ( 𝑤𝐴 → ( 𝑤𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) )
10 7 9 bitr4di ( ( 𝜑𝜓 ) → ( ( 𝑤𝐵 → ¬ 𝑤 𝑅 𝑧 ) ↔ ( 𝑤𝐴 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤𝐵 ) ) ) )
11 10 anbi2d ( ( 𝜑𝜓 ) → ( ( 𝑧𝐵 ∧ ( 𝑤𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ↔ ( 𝑧𝐵 ∧ ( 𝑤𝐴 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤𝐵 ) ) ) ) )
12 11 pm5.74i ( ( ( 𝜑𝜓 ) → ( 𝑧𝐵 ∧ ( 𝑤𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ) ↔ ( ( 𝜑𝜓 ) → ( 𝑧𝐵 ∧ ( 𝑤𝐴 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤𝐵 ) ) ) ) )
13 12 albii ( ∀ 𝑤 ( ( 𝜑𝜓 ) → ( 𝑧𝐵 ∧ ( 𝑤𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ) ↔ ∀ 𝑤 ( ( 𝜑𝜓 ) → ( 𝑧𝐵 ∧ ( 𝑤𝐴 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤𝐵 ) ) ) ) )
14 13 exbii ( ∃ 𝑧𝑤 ( ( 𝜑𝜓 ) → ( 𝑧𝐵 ∧ ( 𝑤𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ) ↔ ∃ 𝑧𝑤 ( ( 𝜑𝜓 ) → ( 𝑧𝐵 ∧ ( 𝑤𝐴 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤𝐵 ) ) ) ) )
15 2 14 mpbir 𝑧𝑤 ( ( 𝜑𝜓 ) → ( 𝑧𝐵 ∧ ( 𝑤𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) )