Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1172.3 |
⊢ 𝐶 = ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ∩ 𝐵 ) |
2 |
|
bnj1172.96 |
⊢ ∃ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) |
3 |
|
bnj1172.113 |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶 ) → ( 𝜃 ↔ 𝑤 ∈ 𝐴 ) ) |
4 |
3
|
imbi1d |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶 ) → ( ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ↔ ( 𝑤 ∈ 𝐴 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) |
5 |
4
|
pm5.32i |
⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ↔ ( ( 𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑤 ∈ 𝐴 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) |
6 |
5
|
imbi2i |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑤 ∈ 𝐴 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) ) |
7 |
6
|
albii |
⊢ ( ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) ↔ ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑤 ∈ 𝐴 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) ) |
8 |
7
|
exbii |
⊢ ( ∃ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) ↔ ∃ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑤 ∈ 𝐴 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) ) |
9 |
2 8
|
mpbi |
⊢ ∃ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑤 ∈ 𝐴 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) |
10 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶 ) → 𝑧 ∈ 𝐶 ) |
11 |
10 1
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶 ) → 𝑧 ∈ ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ∩ 𝐵 ) ) |
12 |
11
|
elin2d |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶 ) → 𝑧 ∈ 𝐵 ) |
13 |
12
|
anim1i |
⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑤 ∈ 𝐴 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) → ( 𝑧 ∈ 𝐵 ∧ ( 𝑤 ∈ 𝐴 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) |
14 |
13
|
imim2i |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑤 ∈ 𝐴 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) → ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐵 ∧ ( 𝑤 ∈ 𝐴 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) ) |
15 |
14
|
alimi |
⊢ ( ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑤 ∈ 𝐴 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) → ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐵 ∧ ( 𝑤 ∈ 𝐴 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) ) |
16 |
9 15
|
bnj101 |
⊢ ∃ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐵 ∧ ( 𝑤 ∈ 𝐴 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) |