Metamath Proof Explorer


Theorem bnj1173

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1173.3 𝐶 = ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ∩ 𝐵 )
bnj1173.5 ( 𝜃 ↔ ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ∧ ( 𝑅 FrSe 𝐴𝑧𝐴 ) ∧ 𝑤𝐴 ) )
bnj1173.9 ( ( 𝜑𝜓 ) → 𝑅 FrSe 𝐴 )
bnj1173.17 ( ( 𝜑𝜓 ) → 𝑋𝐴 )
Assertion bnj1173 ( ( 𝜑𝜓𝑧𝐶 ) → ( 𝜃𝑤𝐴 ) )

Proof

Step Hyp Ref Expression
1 bnj1173.3 𝐶 = ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ∩ 𝐵 )
2 bnj1173.5 ( 𝜃 ↔ ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ∧ ( 𝑅 FrSe 𝐴𝑧𝐴 ) ∧ 𝑤𝐴 ) )
3 bnj1173.9 ( ( 𝜑𝜓 ) → 𝑅 FrSe 𝐴 )
4 bnj1173.17 ( ( 𝜑𝜓 ) → 𝑋𝐴 )
5 3simpc ( ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ∧ ( 𝑅 FrSe 𝐴𝑧𝐴 ) ∧ 𝑤𝐴 ) → ( ( 𝑅 FrSe 𝐴𝑧𝐴 ) ∧ 𝑤𝐴 ) )
6 3 3adant3 ( ( 𝜑𝜓𝑧𝐶 ) → 𝑅 FrSe 𝐴 )
7 4 3adant3 ( ( 𝜑𝜓𝑧𝐶 ) → 𝑋𝐴 )
8 elin ( 𝑧 ∈ ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ∩ 𝐵 ) ↔ ( 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧𝐵 ) )
9 8 simplbi ( 𝑧 ∈ ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ∩ 𝐵 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) )
10 9 1 eleq2s ( 𝑧𝐶𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) )
11 10 3ad2ant3 ( ( 𝜑𝜓𝑧𝐶 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) )
12 pm3.21 ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) → ( ( ( 𝑅 FrSe 𝐴𝑧𝐴 ) ∧ 𝑤𝐴 ) → ( ( ( 𝑅 FrSe 𝐴𝑧𝐴 ) ∧ 𝑤𝐴 ) ∧ ( 𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ) )
13 6 7 11 12 syl3anc ( ( 𝜑𝜓𝑧𝐶 ) → ( ( ( 𝑅 FrSe 𝐴𝑧𝐴 ) ∧ 𝑤𝐴 ) → ( ( ( 𝑅 FrSe 𝐴𝑧𝐴 ) ∧ 𝑤𝐴 ) ∧ ( 𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ) )
14 bnj170 ( ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ∧ ( 𝑅 FrSe 𝐴𝑧𝐴 ) ∧ 𝑤𝐴 ) ↔ ( ( ( 𝑅 FrSe 𝐴𝑧𝐴 ) ∧ 𝑤𝐴 ) ∧ ( 𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) )
15 13 14 syl6ibr ( ( 𝜑𝜓𝑧𝐶 ) → ( ( ( 𝑅 FrSe 𝐴𝑧𝐴 ) ∧ 𝑤𝐴 ) → ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ∧ ( 𝑅 FrSe 𝐴𝑧𝐴 ) ∧ 𝑤𝐴 ) ) )
16 5 15 impbid2 ( ( 𝜑𝜓𝑧𝐶 ) → ( ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ∧ ( 𝑅 FrSe 𝐴𝑧𝐴 ) ∧ 𝑤𝐴 ) ↔ ( ( 𝑅 FrSe 𝐴𝑧𝐴 ) ∧ 𝑤𝐴 ) ) )
17 2 16 syl5bb ( ( 𝜑𝜓𝑧𝐶 ) → ( 𝜃 ↔ ( ( 𝑅 FrSe 𝐴𝑧𝐴 ) ∧ 𝑤𝐴 ) ) )
18 bnj1147 trCl ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐴
19 18 11 bnj1213 ( ( 𝜑𝜓𝑧𝐶 ) → 𝑧𝐴 )
20 6 19 jca ( ( 𝜑𝜓𝑧𝐶 ) → ( 𝑅 FrSe 𝐴𝑧𝐴 ) )
21 20 biantrurd ( ( 𝜑𝜓𝑧𝐶 ) → ( 𝑤𝐴 ↔ ( ( 𝑅 FrSe 𝐴𝑧𝐴 ) ∧ 𝑤𝐴 ) ) )
22 17 21 bitr4d ( ( 𝜑𝜓𝑧𝐶 ) → ( 𝜃𝑤𝐴 ) )