Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1174.3 |
⊢ 𝐶 = ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ∩ 𝐵 ) |
2 |
|
bnj1174.59 |
⊢ ∃ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐶 ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) ) ) ) |
3 |
|
bnj1174.74 |
⊢ ( 𝜃 → ( 𝑤 𝑅 𝑧 → 𝑤 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) |
4 |
1
|
eleq2i |
⊢ ( 𝑤 ∈ 𝐶 ↔ 𝑤 ∈ ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ∩ 𝐵 ) ) |
5 |
4
|
notbii |
⊢ ( ¬ 𝑤 ∈ 𝐶 ↔ ¬ 𝑤 ∈ ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ∩ 𝐵 ) ) |
6 |
|
ianor |
⊢ ( ¬ ( 𝑤 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑤 ∈ 𝐵 ) ↔ ( ¬ 𝑤 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∨ ¬ 𝑤 ∈ 𝐵 ) ) |
7 |
|
elin |
⊢ ( 𝑤 ∈ ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ∩ 𝐵 ) ↔ ( 𝑤 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑤 ∈ 𝐵 ) ) |
8 |
7
|
notbii |
⊢ ( ¬ 𝑤 ∈ ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ∩ 𝐵 ) ↔ ¬ ( 𝑤 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑤 ∈ 𝐵 ) ) |
9 |
|
pm4.62 |
⊢ ( ( 𝑤 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ¬ 𝑤 ∈ 𝐵 ) ↔ ( ¬ 𝑤 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∨ ¬ 𝑤 ∈ 𝐵 ) ) |
10 |
6 8 9
|
3bitr4i |
⊢ ( ¬ 𝑤 ∈ ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ∩ 𝐵 ) ↔ ( 𝑤 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ¬ 𝑤 ∈ 𝐵 ) ) |
11 |
10
|
biimpi |
⊢ ( ¬ 𝑤 ∈ ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ∩ 𝐵 ) → ( 𝑤 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ¬ 𝑤 ∈ 𝐵 ) ) |
12 |
11
|
impcom |
⊢ ( ( 𝑤 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ ¬ 𝑤 ∈ ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ∩ 𝐵 ) ) → ¬ 𝑤 ∈ 𝐵 ) |
13 |
5 12
|
sylan2b |
⊢ ( ( 𝑤 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ ¬ 𝑤 ∈ 𝐶 ) → ¬ 𝑤 ∈ 𝐵 ) |
14 |
13
|
ex |
⊢ ( 𝑤 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ( ¬ 𝑤 ∈ 𝐶 → ¬ 𝑤 ∈ 𝐵 ) ) |
15 |
3 14
|
syl6 |
⊢ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ( ¬ 𝑤 ∈ 𝐶 → ¬ 𝑤 ∈ 𝐵 ) ) ) |
16 |
15
|
a2d |
⊢ ( 𝜃 → ( ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) |
17 |
16
|
biantru |
⊢ ( ( 𝑧 ∈ 𝐶 ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) ) ) ↔ ( ( 𝑧 ∈ 𝐶 ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) ) ) ∧ ( 𝜃 → ( ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) ) |
18 |
|
df-3an |
⊢ ( ( 𝑧 ∈ 𝐶 ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) ) ∧ ( 𝜃 → ( ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) ↔ ( ( 𝑧 ∈ 𝐶 ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) ) ) ∧ ( 𝜃 → ( ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) ) |
19 |
|
3anass |
⊢ ( ( 𝑧 ∈ 𝐶 ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) ) ∧ ( 𝜃 → ( ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) ↔ ( 𝑧 ∈ 𝐶 ∧ ( ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) ) ∧ ( 𝜃 → ( ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) ) ) |
20 |
17 18 19
|
3bitr2i |
⊢ ( ( 𝑧 ∈ 𝐶 ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) ) ) ↔ ( 𝑧 ∈ 𝐶 ∧ ( ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) ) ∧ ( 𝜃 → ( ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) ) ) |
21 |
20
|
imbi2i |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐶 ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) ) ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐶 ∧ ( ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) ) ∧ ( 𝜃 → ( ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) ) ) ) |
22 |
21
|
albii |
⊢ ( ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐶 ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) ) ) ) ↔ ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐶 ∧ ( ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) ) ∧ ( 𝜃 → ( ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) ) ) ) |
23 |
22
|
exbii |
⊢ ( ∃ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐶 ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) ) ) ) ↔ ∃ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐶 ∧ ( ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) ) ∧ ( 𝜃 → ( ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) ) ) ) |
24 |
2 23
|
mpbi |
⊢ ∃ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐶 ∧ ( ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) ) ∧ ( 𝜃 → ( ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) ) ) |
25 |
|
imdi |
⊢ ( ( 𝜃 → ( ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ↔ ( ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) ) → ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) |
26 |
|
pm3.35 |
⊢ ( ( ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) ) ∧ ( ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) ) → ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) → ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) |
27 |
25 26
|
sylan2b |
⊢ ( ( ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) ) ∧ ( 𝜃 → ( ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) → ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) |
28 |
27
|
anim2i |
⊢ ( ( 𝑧 ∈ 𝐶 ∧ ( ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) ) ∧ ( 𝜃 → ( ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) ) → ( 𝑧 ∈ 𝐶 ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) |
29 |
28
|
imim2i |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐶 ∧ ( ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) ) ∧ ( 𝜃 → ( ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) ) ) → ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐶 ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) ) |
30 |
29
|
alimi |
⊢ ( ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐶 ∧ ( ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) ) ∧ ( 𝜃 → ( ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐶 ) → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) ) ) → ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐶 ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) ) |
31 |
24 30
|
bnj101 |
⊢ ∃ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐶 ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) |
32 |
|
ancl |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐶 ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) → ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑧 ∈ 𝐶 ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) ) ) |
33 |
|
bnj256 |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶 ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑧 ∈ 𝐶 ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) ) |
34 |
32 33
|
syl6ibr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐶 ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) → ( ( 𝜑 ∧ 𝜓 ) → ( 𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶 ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) ) |
35 |
34
|
alimi |
⊢ ( ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐶 ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) → ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶 ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) ) |
36 |
31 35
|
bnj101 |
⊢ ∃ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶 ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) |
37 |
|
df-bnj17 |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶 ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ↔ ( ( 𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) |
38 |
37
|
imbi2i |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) → ( 𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶 ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) ) |
39 |
38
|
albii |
⊢ ( ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶 ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) ↔ ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) ) |
40 |
39
|
exbii |
⊢ ( ∃ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶 ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) ↔ ∃ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) ) |
41 |
36 40
|
mpbi |
⊢ ∃ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝜃 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) |