Metamath Proof Explorer


Theorem bnj1175

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1175.3 𝐶 = ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ∩ 𝐵 )
bnj1175.4 ( 𝜒 ↔ ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ∧ ( 𝑅 FrSe 𝐴𝑧𝐴 ) ∧ ( 𝑤𝐴𝑤 𝑅 𝑧 ) ) )
bnj1175.5 ( 𝜃 ↔ ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ∧ ( 𝑅 FrSe 𝐴𝑧𝐴 ) ∧ 𝑤𝐴 ) )
Assertion bnj1175 ( 𝜃 → ( 𝑤 𝑅 𝑧𝑤 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 bnj1175.3 𝐶 = ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ∩ 𝐵 )
2 bnj1175.4 ( 𝜒 ↔ ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ∧ ( 𝑅 FrSe 𝐴𝑧𝐴 ) ∧ ( 𝑤𝐴𝑤 𝑅 𝑧 ) ) )
3 bnj1175.5 ( 𝜃 ↔ ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ∧ ( 𝑅 FrSe 𝐴𝑧𝐴 ) ∧ 𝑤𝐴 ) )
4 bnj255 ( ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ∧ ( 𝑅 FrSe 𝐴𝑧𝐴 ) ∧ 𝑤𝐴𝑤 𝑅 𝑧 ) ↔ ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ∧ ( 𝑅 FrSe 𝐴𝑧𝐴 ) ∧ ( 𝑤𝐴𝑤 𝑅 𝑧 ) ) )
5 df-bnj17 ( ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ∧ ( 𝑅 FrSe 𝐴𝑧𝐴 ) ∧ 𝑤𝐴𝑤 𝑅 𝑧 ) ↔ ( ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ∧ ( 𝑅 FrSe 𝐴𝑧𝐴 ) ∧ 𝑤𝐴 ) ∧ 𝑤 𝑅 𝑧 ) )
6 2 4 5 3bitr2i ( 𝜒 ↔ ( ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ∧ ( 𝑅 FrSe 𝐴𝑧𝐴 ) ∧ 𝑤𝐴 ) ∧ 𝑤 𝑅 𝑧 ) )
7 3 anbi1i ( ( 𝜃𝑤 𝑅 𝑧 ) ↔ ( ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ∧ ( 𝑅 FrSe 𝐴𝑧𝐴 ) ∧ 𝑤𝐴 ) ∧ 𝑤 𝑅 𝑧 ) )
8 6 7 bitr4i ( 𝜒 ↔ ( 𝜃𝑤 𝑅 𝑧 ) )
9 bnj1125 ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) → trCl ( 𝑧 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) )
10 2 9 bnj835 ( 𝜒 → trCl ( 𝑧 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) )
11 bnj906 ( ( 𝑅 FrSe 𝐴𝑧𝐴 ) → pred ( 𝑧 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑧 , 𝐴 , 𝑅 ) )
12 2 11 bnj836 ( 𝜒 → pred ( 𝑧 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑧 , 𝐴 , 𝑅 ) )
13 bnj1152 ( 𝑤 ∈ pred ( 𝑧 , 𝐴 , 𝑅 ) ↔ ( 𝑤𝐴𝑤 𝑅 𝑧 ) )
14 13 biimpri ( ( 𝑤𝐴𝑤 𝑅 𝑧 ) → 𝑤 ∈ pred ( 𝑧 , 𝐴 , 𝑅 ) )
15 2 14 bnj837 ( 𝜒𝑤 ∈ pred ( 𝑧 , 𝐴 , 𝑅 ) )
16 12 15 sseldd ( 𝜒𝑤 ∈ trCl ( 𝑧 , 𝐴 , 𝑅 ) )
17 10 16 sseldd ( 𝜒𝑤 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) )
18 8 17 sylbir ( ( 𝜃𝑤 𝑅 𝑧 ) → 𝑤 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) )
19 18 ex ( 𝜃 → ( 𝑤 𝑅 𝑧𝑤 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) )