Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1177.2 |
⊢ ( 𝜓 ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 𝑅 𝑋 ) ) |
2 |
|
bnj1177.3 |
⊢ 𝐶 = ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ∩ 𝐵 ) |
3 |
|
bnj1177.9 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑅 FrSe 𝐴 ) |
4 |
|
bnj1177.13 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐵 ⊆ 𝐴 ) |
5 |
|
bnj1177.17 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑋 ∈ 𝐴 ) |
6 |
|
df-bnj15 |
⊢ ( 𝑅 FrSe 𝐴 ↔ ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ) |
7 |
6
|
simplbi |
⊢ ( 𝑅 FrSe 𝐴 → 𝑅 Fr 𝐴 ) |
8 |
3 7
|
syl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑅 Fr 𝐴 ) |
9 |
|
bnj1147 |
⊢ trCl ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐴 |
10 |
|
ssinss1 |
⊢ ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐴 → ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ∩ 𝐵 ) ⊆ 𝐴 ) |
11 |
9 10
|
ax-mp |
⊢ ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ∩ 𝐵 ) ⊆ 𝐴 |
12 |
2 11
|
eqsstri |
⊢ 𝐶 ⊆ 𝐴 |
13 |
12
|
a1i |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐶 ⊆ 𝐴 ) |
14 |
|
bnj906 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) |
15 |
3 5 14
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) |
16 |
15
|
ssrind |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∩ 𝐵 ) ⊆ ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ∩ 𝐵 ) ) |
17 |
1
|
simp2bi |
⊢ ( 𝜓 → 𝑦 ∈ 𝐵 ) |
18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑦 ∈ 𝐵 ) |
19 |
4 18
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑦 ∈ 𝐴 ) |
20 |
1
|
simp3bi |
⊢ ( 𝜓 → 𝑦 𝑅 𝑋 ) |
21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑦 𝑅 𝑋 ) |
22 |
|
bnj1152 |
⊢ ( 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑋 ) ) |
23 |
19 21 22
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
24 |
23 18
|
elind |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑦 ∈ ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∩ 𝐵 ) ) |
25 |
16 24
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑦 ∈ ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ∩ 𝐵 ) ) |
26 |
25
|
ne0d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ∩ 𝐵 ) ≠ ∅ ) |
27 |
2
|
neeq1i |
⊢ ( 𝐶 ≠ ∅ ↔ ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ∩ 𝐵 ) ≠ ∅ ) |
28 |
26 27
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐶 ≠ ∅ ) |
29 |
|
bnj893 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → trCl ( 𝑋 , 𝐴 , 𝑅 ) ∈ V ) |
30 |
3 5 29
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → trCl ( 𝑋 , 𝐴 , 𝑅 ) ∈ V ) |
31 |
|
inex1g |
⊢ ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ∈ V → ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ∩ 𝐵 ) ∈ V ) |
32 |
2 31
|
eqeltrid |
⊢ ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ∈ V → 𝐶 ∈ V ) |
33 |
30 32
|
syl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐶 ∈ V ) |
34 |
8 13 28 33
|
bnj951 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑅 Fr 𝐴 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ≠ ∅ ∧ 𝐶 ∈ V ) ) |