Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj118.1 | ⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) | |
bnj118.2 | ⊢ ( 𝜑′ ↔ [ 1o / 𝑛 ] 𝜑 ) | ||
Assertion | bnj118 | ⊢ ( 𝜑′ ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj118.1 | ⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) | |
2 | bnj118.2 | ⊢ ( 𝜑′ ↔ [ 1o / 𝑛 ] 𝜑 ) | |
3 | bnj105 | ⊢ 1o ∈ V | |
4 | 1 3 | bnj91 | ⊢ ( [ 1o / 𝑛 ] 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
5 | 2 4 | bitri | ⊢ ( 𝜑′ ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |