Metamath Proof Explorer


Theorem bnj118

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj118.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )
bnj118.2 ( 𝜑′[ 1o / 𝑛 ] 𝜑 )
Assertion bnj118 ( 𝜑′ ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )

Proof

Step Hyp Ref Expression
1 bnj118.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )
2 bnj118.2 ( 𝜑′[ 1o / 𝑛 ] 𝜑 )
3 bnj105 1o ∈ V
4 1 3 bnj91 ( [ 1o / 𝑛 ] 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )
5 2 4 bitri ( 𝜑′ ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )