Metamath Proof Explorer


Theorem bnj1196

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj1196.1 ( 𝜑 → ∃ 𝑥𝐴 𝜓 )
Assertion bnj1196 ( 𝜑 → ∃ 𝑥 ( 𝑥𝐴𝜓 ) )

Proof

Step Hyp Ref Expression
1 bnj1196.1 ( 𝜑 → ∃ 𝑥𝐴 𝜓 )
2 df-rex ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥 ( 𝑥𝐴𝜓 ) )
3 1 2 sylib ( 𝜑 → ∃ 𝑥 ( 𝑥𝐴𝜓 ) )