Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1204.1 |
⊢ ( 𝜓 ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → [ 𝑦 / 𝑥 ] 𝜑 ) ) |
2 |
|
simp1 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ∧ ∃ 𝑥 ∈ 𝐴 ¬ 𝜑 ) → 𝑅 FrSe 𝐴 ) |
3 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ⊆ 𝐴 |
4 |
3
|
a1i |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ∧ ∃ 𝑥 ∈ 𝐴 ¬ 𝜑 ) → { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ⊆ 𝐴 ) |
5 |
|
simp3 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ∧ ∃ 𝑥 ∈ 𝐴 ¬ 𝜑 ) → ∃ 𝑥 ∈ 𝐴 ¬ 𝜑 ) |
6 |
|
rabn0 |
⊢ ( { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ≠ ∅ ↔ ∃ 𝑥 ∈ 𝐴 ¬ 𝜑 ) |
7 |
5 6
|
sylibr |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ∧ ∃ 𝑥 ∈ 𝐴 ¬ 𝜑 ) → { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ≠ ∅ ) |
8 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } |
9 |
8
|
nfcrii |
⊢ ( 𝑧 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } → ∀ 𝑥 𝑧 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ) |
10 |
9
|
bnj1228 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ⊆ 𝐴 ∧ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ≠ ∅ ) → ∃ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ¬ 𝑦 𝑅 𝑥 ) |
11 |
2 4 7 10
|
syl3anc |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ∧ ∃ 𝑥 ∈ 𝐴 ¬ 𝜑 ) → ∃ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ¬ 𝑦 𝑅 𝑥 ) |
12 |
|
biid |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ∧ ∃ 𝑥 ∈ 𝐴 ¬ 𝜑 ) ∧ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ¬ 𝑦 𝑅 𝑥 ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ∧ ∃ 𝑥 ∈ 𝐴 ¬ 𝜑 ) ∧ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ¬ 𝑦 𝑅 𝑥 ) ) |
13 |
|
nfv |
⊢ Ⅎ 𝑥 𝑅 FrSe 𝐴 |
14 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) |
15 |
|
nfre1 |
⊢ Ⅎ 𝑥 ∃ 𝑥 ∈ 𝐴 ¬ 𝜑 |
16 |
13 14 15
|
nf3an |
⊢ Ⅎ 𝑥 ( 𝑅 FrSe 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ∧ ∃ 𝑥 ∈ 𝐴 ¬ 𝜑 ) |
17 |
16
|
nf5ri |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ∧ ∃ 𝑥 ∈ 𝐴 ¬ 𝜑 ) → ∀ 𝑥 ( 𝑅 FrSe 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ∧ ∃ 𝑥 ∈ 𝐴 ¬ 𝜑 ) ) |
18 |
11 12 17
|
bnj1521 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ∧ ∃ 𝑥 ∈ 𝐴 ¬ 𝜑 ) → ∃ 𝑥 ( ( 𝑅 FrSe 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ∧ ∃ 𝑥 ∈ 𝐴 ¬ 𝜑 ) ∧ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ¬ 𝑦 𝑅 𝑥 ) ) |
19 |
|
eqid |
⊢ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } = { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } |
20 |
19 12
|
bnj1212 |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ∧ ∃ 𝑥 ∈ 𝐴 ¬ 𝜑 ) ∧ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ¬ 𝑦 𝑅 𝑥 ) → 𝑥 ∈ 𝐴 ) |
21 |
|
nfra1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ¬ 𝑦 𝑅 𝑥 |
22 |
|
simp3 |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ¬ 𝑦 𝑅 𝑥 ) → ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ¬ 𝑦 𝑅 𝑥 ) |
23 |
22
|
bnj1211 |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ¬ 𝑦 𝑅 𝑥 ) → ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } → ¬ 𝑦 𝑅 𝑥 ) ) |
24 |
|
con2b |
⊢ ( ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } → ¬ 𝑦 𝑅 𝑥 ) ↔ ( 𝑦 𝑅 𝑥 → ¬ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ) ) |
25 |
24
|
albii |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } → ¬ 𝑦 𝑅 𝑥 ) ↔ ∀ 𝑦 ( 𝑦 𝑅 𝑥 → ¬ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ) ) |
26 |
23 25
|
sylib |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ¬ 𝑦 𝑅 𝑥 ) → ∀ 𝑦 ( 𝑦 𝑅 𝑥 → ¬ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ) ) |
27 |
|
simp2 |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ¬ 𝑦 𝑅 𝑥 ) → 𝑦 𝑅 𝑥 ) |
28 |
|
sp |
⊢ ( ∀ 𝑦 ( 𝑦 𝑅 𝑥 → ¬ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ) → ( 𝑦 𝑅 𝑥 → ¬ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ) ) |
29 |
26 27 28
|
sylc |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ¬ 𝑦 𝑅 𝑥 ) → ¬ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ) |
30 |
|
simp1 |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ¬ 𝑦 𝑅 𝑥 ) → 𝑦 ∈ 𝐴 ) |
31 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
32 |
31
|
elrabsf |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ↔ ( 𝑦 ∈ 𝐴 ∧ [ 𝑦 / 𝑥 ] ¬ 𝜑 ) ) |
33 |
|
vex |
⊢ 𝑦 ∈ V |
34 |
|
sbcng |
⊢ ( 𝑦 ∈ V → ( [ 𝑦 / 𝑥 ] ¬ 𝜑 ↔ ¬ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
35 |
33 34
|
ax-mp |
⊢ ( [ 𝑦 / 𝑥 ] ¬ 𝜑 ↔ ¬ [ 𝑦 / 𝑥 ] 𝜑 ) |
36 |
35
|
anbi2i |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ [ 𝑦 / 𝑥 ] ¬ 𝜑 ) ↔ ( 𝑦 ∈ 𝐴 ∧ ¬ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
37 |
32 36
|
bitri |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ↔ ( 𝑦 ∈ 𝐴 ∧ ¬ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
38 |
37
|
notbii |
⊢ ( ¬ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ↔ ¬ ( 𝑦 ∈ 𝐴 ∧ ¬ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
39 |
|
imnan |
⊢ ( ( 𝑦 ∈ 𝐴 → ¬ ¬ [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ¬ ( 𝑦 ∈ 𝐴 ∧ ¬ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
40 |
38 39
|
sylbb2 |
⊢ ( ¬ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } → ( 𝑦 ∈ 𝐴 → ¬ ¬ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
41 |
40
|
imp |
⊢ ( ( ¬ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ∧ 𝑦 ∈ 𝐴 ) → ¬ ¬ [ 𝑦 / 𝑥 ] 𝜑 ) |
42 |
41
|
notnotrd |
⊢ ( ( ¬ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ∧ 𝑦 ∈ 𝐴 ) → [ 𝑦 / 𝑥 ] 𝜑 ) |
43 |
29 30 42
|
syl2anc |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ¬ 𝑦 𝑅 𝑥 ) → [ 𝑦 / 𝑥 ] 𝜑 ) |
44 |
43
|
3expa |
⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑥 ) ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ¬ 𝑦 𝑅 𝑥 ) → [ 𝑦 / 𝑥 ] 𝜑 ) |
45 |
44
|
expcom |
⊢ ( ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ¬ 𝑦 𝑅 𝑥 → ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑥 ) → [ 𝑦 / 𝑥 ] 𝜑 ) ) |
46 |
45
|
expd |
⊢ ( ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ¬ 𝑦 𝑅 𝑥 → ( 𝑦 ∈ 𝐴 → ( 𝑦 𝑅 𝑥 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
47 |
21 46
|
ralrimi |
⊢ ( ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ¬ 𝑦 𝑅 𝑥 → ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → [ 𝑦 / 𝑥 ] 𝜑 ) ) |
48 |
47 1
|
sylibr |
⊢ ( ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ¬ 𝑦 𝑅 𝑥 → 𝜓 ) |
49 |
48
|
3ad2ant3 |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ∧ ∃ 𝑥 ∈ 𝐴 ¬ 𝜑 ) ∧ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ¬ 𝑦 𝑅 𝑥 ) → 𝜓 ) |
50 |
|
simp12 |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ∧ ∃ 𝑥 ∈ 𝐴 ¬ 𝜑 ) ∧ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ¬ 𝑦 𝑅 𝑥 ) → ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ) |
51 |
|
simp3 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ) |
52 |
51
|
bnj1211 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ) → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜓 → 𝜑 ) ) ) |
53 |
|
simp1 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ) → 𝑥 ∈ 𝐴 ) |
54 |
|
simp2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ) → 𝜓 ) |
55 |
|
sp |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜓 → 𝜑 ) ) → ( 𝑥 ∈ 𝐴 → ( 𝜓 → 𝜑 ) ) ) |
56 |
52 53 54 55
|
syl3c |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ) → 𝜑 ) |
57 |
20 49 50 56
|
syl3anc |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ∧ ∃ 𝑥 ∈ 𝐴 ¬ 𝜑 ) ∧ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ¬ 𝑦 𝑅 𝑥 ) → 𝜑 ) |
58 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝜑 ) ) |
59 |
58
|
simprbi |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } → ¬ 𝜑 ) |
60 |
59
|
3ad2ant2 |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ∧ ∃ 𝑥 ∈ 𝐴 ¬ 𝜑 ) ∧ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ¬ 𝑦 𝑅 𝑥 ) → ¬ 𝜑 ) |
61 |
18 57 60
|
bnj1304 |
⊢ ¬ ( 𝑅 FrSe 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ∧ ∃ 𝑥 ∈ 𝐴 ¬ 𝜑 ) |
62 |
61
|
bnj1224 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ) → ¬ ∃ 𝑥 ∈ 𝐴 ¬ 𝜑 ) |
63 |
|
dfral2 |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∃ 𝑥 ∈ 𝐴 ¬ 𝜑 ) |
64 |
62 63
|
sylibr |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ) → ∀ 𝑥 ∈ 𝐴 𝜑 ) |