Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj1209.1 | ⊢ ( 𝜒 → ∃ 𝑥 ∈ 𝐵 𝜑 ) | |
bnj1209.2 | ⊢ ( 𝜃 ↔ ( 𝜒 ∧ 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) | ||
Assertion | bnj1209 | ⊢ ( 𝜒 → ∃ 𝑥 𝜃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1209.1 | ⊢ ( 𝜒 → ∃ 𝑥 ∈ 𝐵 𝜑 ) | |
2 | bnj1209.2 | ⊢ ( 𝜃 ↔ ( 𝜒 ∧ 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) | |
3 | 1 | bnj1196 | ⊢ ( 𝜒 → ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) |
4 | 3 | ancli | ⊢ ( 𝜒 → ( 𝜒 ∧ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ) |
5 | 19.42v | ⊢ ( ∃ 𝑥 ( 𝜒 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ↔ ( 𝜒 ∧ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ) | |
6 | 4 5 | sylibr | ⊢ ( 𝜒 → ∃ 𝑥 ( 𝜒 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ) |
7 | 3anass | ⊢ ( ( 𝜒 ∧ 𝑥 ∈ 𝐵 ∧ 𝜑 ) ↔ ( 𝜒 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ) | |
8 | 2 7 | bitri | ⊢ ( 𝜃 ↔ ( 𝜒 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ) |
9 | 6 8 | bnj1198 | ⊢ ( 𝜒 → ∃ 𝑥 𝜃 ) |