Metamath Proof Explorer


Theorem bnj1209

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1209.1 ( 𝜒 → ∃ 𝑥𝐵 𝜑 )
bnj1209.2 ( 𝜃 ↔ ( 𝜒𝑥𝐵𝜑 ) )
Assertion bnj1209 ( 𝜒 → ∃ 𝑥 𝜃 )

Proof

Step Hyp Ref Expression
1 bnj1209.1 ( 𝜒 → ∃ 𝑥𝐵 𝜑 )
2 bnj1209.2 ( 𝜃 ↔ ( 𝜒𝑥𝐵𝜑 ) )
3 1 bnj1196 ( 𝜒 → ∃ 𝑥 ( 𝑥𝐵𝜑 ) )
4 3 ancli ( 𝜒 → ( 𝜒 ∧ ∃ 𝑥 ( 𝑥𝐵𝜑 ) ) )
5 19.42v ( ∃ 𝑥 ( 𝜒 ∧ ( 𝑥𝐵𝜑 ) ) ↔ ( 𝜒 ∧ ∃ 𝑥 ( 𝑥𝐵𝜑 ) ) )
6 4 5 sylibr ( 𝜒 → ∃ 𝑥 ( 𝜒 ∧ ( 𝑥𝐵𝜑 ) ) )
7 3anass ( ( 𝜒𝑥𝐵𝜑 ) ↔ ( 𝜒 ∧ ( 𝑥𝐵𝜑 ) ) )
8 2 7 bitri ( 𝜃 ↔ ( 𝜒 ∧ ( 𝑥𝐵𝜑 ) ) )
9 6 8 bnj1198 ( 𝜒 → ∃ 𝑥 𝜃 )