Metamath Proof Explorer


Theorem bnj1212

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1212.1 𝐵 = { 𝑥𝐴𝜑 }
bnj1212.2 ( 𝜃 ↔ ( 𝜒𝑥𝐵𝜏 ) )
Assertion bnj1212 ( 𝜃𝑥𝐴 )

Proof

Step Hyp Ref Expression
1 bnj1212.1 𝐵 = { 𝑥𝐴𝜑 }
2 bnj1212.2 ( 𝜃 ↔ ( 𝜒𝑥𝐵𝜏 ) )
3 1 ssrab3 𝐵𝐴
4 2 simp2bi ( 𝜃𝑥𝐵 )
5 3 4 bnj1213 ( 𝜃𝑥𝐴 )