Metamath Proof Explorer
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
bnj1212.1 |
⊢ 𝐵 = { 𝑥 ∈ 𝐴 ∣ 𝜑 } |
|
|
bnj1212.2 |
⊢ ( 𝜃 ↔ ( 𝜒 ∧ 𝑥 ∈ 𝐵 ∧ 𝜏 ) ) |
|
Assertion |
bnj1212 |
⊢ ( 𝜃 → 𝑥 ∈ 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1212.1 |
⊢ 𝐵 = { 𝑥 ∈ 𝐴 ∣ 𝜑 } |
2 |
|
bnj1212.2 |
⊢ ( 𝜃 ↔ ( 𝜒 ∧ 𝑥 ∈ 𝐵 ∧ 𝜏 ) ) |
3 |
1
|
ssrab3 |
⊢ 𝐵 ⊆ 𝐴 |
4 |
2
|
simp2bi |
⊢ ( 𝜃 → 𝑥 ∈ 𝐵 ) |
5 |
3 4
|
bnj1213 |
⊢ ( 𝜃 → 𝑥 ∈ 𝐴 ) |