Metamath Proof Explorer


Theorem bnj1219

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1219.1 ( 𝜒 ↔ ( 𝜑𝜓𝜁 ) )
bnj1219.2 ( 𝜃 ↔ ( 𝜒𝜏𝜂 ) )
Assertion bnj1219 ( 𝜃𝜓 )

Proof

Step Hyp Ref Expression
1 bnj1219.1 ( 𝜒 ↔ ( 𝜑𝜓𝜁 ) )
2 bnj1219.2 ( 𝜃 ↔ ( 𝜒𝜏𝜂 ) )
3 1 simp2bi ( 𝜒𝜓 )
4 2 3 bnj835 ( 𝜃𝜓 )