Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1228.1 |
⊢ ( 𝑤 ∈ 𝐵 → ∀ 𝑥 𝑤 ∈ 𝐵 ) |
2 |
|
bnj69 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → ∃ 𝑧 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑧 ) |
3 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) |
4 |
1
|
nfcii |
⊢ Ⅎ 𝑥 𝐵 |
5 |
4
|
nfcri |
⊢ Ⅎ 𝑥 𝑧 ∈ 𝐵 |
6 |
|
nfv |
⊢ Ⅎ 𝑥 ¬ 𝑦 𝑅 𝑧 |
7 |
4 6
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑧 |
8 |
5 7
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑧 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑧 ) |
9 |
|
eleq1w |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵 ) ) |
10 |
|
breq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑦 𝑅 𝑥 ↔ 𝑦 𝑅 𝑧 ) ) |
11 |
10
|
notbid |
⊢ ( 𝑥 = 𝑧 → ( ¬ 𝑦 𝑅 𝑥 ↔ ¬ 𝑦 𝑅 𝑧 ) ) |
12 |
11
|
ralbidv |
⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ↔ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑧 ) ) |
13 |
9 12
|
anbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) ↔ ( 𝑧 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑧 ) ) ) |
14 |
3 8 13
|
cbvexv1 |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑧 ) ) |
15 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) ) |
16 |
|
df-rex |
⊢ ( ∃ 𝑧 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑧 ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑧 ) ) |
17 |
14 15 16
|
3bitr4i |
⊢ ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ↔ ∃ 𝑧 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑧 ) |
18 |
2 17
|
sylibr |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) |