Metamath Proof Explorer


Theorem bnj1228

Description: Existence of a minimal element in certain classes: if R is well-founded and set-like on A , then every nonempty subclass of A has a minimal element. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj1228.1 ( 𝑤𝐵 → ∀ 𝑥 𝑤𝐵 )
Assertion bnj1228 ( ( 𝑅 FrSe 𝐴𝐵𝐴𝐵 ≠ ∅ ) → ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 )

Proof

Step Hyp Ref Expression
1 bnj1228.1 ( 𝑤𝐵 → ∀ 𝑥 𝑤𝐵 )
2 bnj69 ( ( 𝑅 FrSe 𝐴𝐵𝐴𝐵 ≠ ∅ ) → ∃ 𝑧𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑧 )
3 nfv 𝑧 ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ¬ 𝑦 𝑅 𝑥 )
4 1 nfcii 𝑥 𝐵
5 4 nfcri 𝑥 𝑧𝐵
6 nfv 𝑥 ¬ 𝑦 𝑅 𝑧
7 4 6 nfralw 𝑥𝑦𝐵 ¬ 𝑦 𝑅 𝑧
8 5 7 nfan 𝑥 ( 𝑧𝐵 ∧ ∀ 𝑦𝐵 ¬ 𝑦 𝑅 𝑧 )
9 eleq1w ( 𝑥 = 𝑧 → ( 𝑥𝐵𝑧𝐵 ) )
10 breq2 ( 𝑥 = 𝑧 → ( 𝑦 𝑅 𝑥𝑦 𝑅 𝑧 ) )
11 10 notbid ( 𝑥 = 𝑧 → ( ¬ 𝑦 𝑅 𝑥 ↔ ¬ 𝑦 𝑅 𝑧 ) )
12 11 ralbidv ( 𝑥 = 𝑧 → ( ∀ 𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ↔ ∀ 𝑦𝐵 ¬ 𝑦 𝑅 𝑧 ) )
13 9 12 anbi12d ( 𝑥 = 𝑧 → ( ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ) ↔ ( 𝑧𝐵 ∧ ∀ 𝑦𝐵 ¬ 𝑦 𝑅 𝑧 ) ) )
14 3 8 13 cbvexv1 ( ∃ 𝑥 ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ) ↔ ∃ 𝑧 ( 𝑧𝐵 ∧ ∀ 𝑦𝐵 ¬ 𝑦 𝑅 𝑧 ) )
15 df-rex ( ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ↔ ∃ 𝑥 ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ) )
16 df-rex ( ∃ 𝑧𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑧 ↔ ∃ 𝑧 ( 𝑧𝐵 ∧ ∀ 𝑦𝐵 ¬ 𝑦 𝑅 𝑧 ) )
17 14 15 16 3bitr4i ( ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ↔ ∃ 𝑧𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑧 )
18 2 17 sylibr ( ( 𝑅 FrSe 𝐴𝐵𝐴𝐵 ≠ ∅ ) → ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 )