Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1245.1 |
⊢ 𝐵 = { 𝑑 ∣ ( 𝑑 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) } |
2 |
|
bnj1245.2 |
⊢ 𝑌 = 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
3 |
|
bnj1245.3 |
⊢ 𝐶 = { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
4 |
|
bnj1245.4 |
⊢ 𝐷 = ( dom 𝑔 ∩ dom ℎ ) |
5 |
|
bnj1245.5 |
⊢ 𝐸 = { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } |
6 |
|
bnj1245.6 |
⊢ ( 𝜑 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ ( 𝑔 ↾ 𝐷 ) ≠ ( ℎ ↾ 𝐷 ) ) ) |
7 |
|
bnj1245.7 |
⊢ ( 𝜓 ↔ ( 𝜑 ∧ 𝑥 ∈ 𝐸 ∧ ∀ 𝑦 ∈ 𝐸 ¬ 𝑦 𝑅 𝑥 ) ) |
8 |
|
bnj1245.8 |
⊢ 𝑍 = 〈 𝑥 , ( ℎ ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
9 |
|
bnj1245.9 |
⊢ 𝐾 = { ℎ ∣ ∃ 𝑑 ∈ 𝐵 ( ℎ Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( ℎ ‘ 𝑥 ) = ( 𝐺 ‘ 𝑍 ) ) } |
10 |
6
|
bnj1247 |
⊢ ( 𝜑 → ℎ ∈ 𝐶 ) |
11 |
2 3 8 9
|
bnj1234 |
⊢ 𝐶 = 𝐾 |
12 |
10 11
|
eleqtrdi |
⊢ ( 𝜑 → ℎ ∈ 𝐾 ) |
13 |
9
|
abeq2i |
⊢ ( ℎ ∈ 𝐾 ↔ ∃ 𝑑 ∈ 𝐵 ( ℎ Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( ℎ ‘ 𝑥 ) = ( 𝐺 ‘ 𝑍 ) ) ) |
14 |
13
|
bnj1238 |
⊢ ( ℎ ∈ 𝐾 → ∃ 𝑑 ∈ 𝐵 ℎ Fn 𝑑 ) |
15 |
14
|
bnj1196 |
⊢ ( ℎ ∈ 𝐾 → ∃ 𝑑 ( 𝑑 ∈ 𝐵 ∧ ℎ Fn 𝑑 ) ) |
16 |
1
|
abeq2i |
⊢ ( 𝑑 ∈ 𝐵 ↔ ( 𝑑 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) ) |
17 |
16
|
simplbi |
⊢ ( 𝑑 ∈ 𝐵 → 𝑑 ⊆ 𝐴 ) |
18 |
|
fndm |
⊢ ( ℎ Fn 𝑑 → dom ℎ = 𝑑 ) |
19 |
17 18
|
bnj1241 |
⊢ ( ( 𝑑 ∈ 𝐵 ∧ ℎ Fn 𝑑 ) → dom ℎ ⊆ 𝐴 ) |
20 |
15 19
|
bnj593 |
⊢ ( ℎ ∈ 𝐾 → ∃ 𝑑 dom ℎ ⊆ 𝐴 ) |
21 |
20
|
bnj937 |
⊢ ( ℎ ∈ 𝐾 → dom ℎ ⊆ 𝐴 ) |
22 |
12 21
|
syl |
⊢ ( 𝜑 → dom ℎ ⊆ 𝐴 ) |