Metamath Proof Explorer


Theorem bnj1245

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1245.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
bnj1245.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
bnj1245.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
bnj1245.4 𝐷 = ( dom 𝑔 ∩ dom )
bnj1245.5 𝐸 = { 𝑥𝐷 ∣ ( 𝑔𝑥 ) ≠ ( 𝑥 ) }
bnj1245.6 ( 𝜑 ↔ ( 𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ ( 𝑔𝐷 ) ≠ ( 𝐷 ) ) )
bnj1245.7 ( 𝜓 ↔ ( 𝜑𝑥𝐸 ∧ ∀ 𝑦𝐸 ¬ 𝑦 𝑅 𝑥 ) )
bnj1245.8 𝑍 = ⟨ 𝑥 , ( ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
bnj1245.9 𝐾 = { ∣ ∃ 𝑑𝐵 ( Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑥 ) = ( 𝐺𝑍 ) ) }
Assertion bnj1245 ( 𝜑 → dom 𝐴 )

Proof

Step Hyp Ref Expression
1 bnj1245.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
2 bnj1245.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
3 bnj1245.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
4 bnj1245.4 𝐷 = ( dom 𝑔 ∩ dom )
5 bnj1245.5 𝐸 = { 𝑥𝐷 ∣ ( 𝑔𝑥 ) ≠ ( 𝑥 ) }
6 bnj1245.6 ( 𝜑 ↔ ( 𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ ( 𝑔𝐷 ) ≠ ( 𝐷 ) ) )
7 bnj1245.7 ( 𝜓 ↔ ( 𝜑𝑥𝐸 ∧ ∀ 𝑦𝐸 ¬ 𝑦 𝑅 𝑥 ) )
8 bnj1245.8 𝑍 = ⟨ 𝑥 , ( ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
9 bnj1245.9 𝐾 = { ∣ ∃ 𝑑𝐵 ( Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑥 ) = ( 𝐺𝑍 ) ) }
10 6 bnj1247 ( 𝜑𝐶 )
11 2 3 8 9 bnj1234 𝐶 = 𝐾
12 10 11 eleqtrdi ( 𝜑𝐾 )
13 9 abeq2i ( 𝐾 ↔ ∃ 𝑑𝐵 ( Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑥 ) = ( 𝐺𝑍 ) ) )
14 13 bnj1238 ( 𝐾 → ∃ 𝑑𝐵 Fn 𝑑 )
15 14 bnj1196 ( 𝐾 → ∃ 𝑑 ( 𝑑𝐵 Fn 𝑑 ) )
16 1 abeq2i ( 𝑑𝐵 ↔ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) )
17 16 simplbi ( 𝑑𝐵𝑑𝐴 )
18 fndm ( Fn 𝑑 → dom = 𝑑 )
19 17 18 bnj1241 ( ( 𝑑𝐵 Fn 𝑑 ) → dom 𝐴 )
20 15 19 bnj593 ( 𝐾 → ∃ 𝑑 dom 𝐴 )
21 20 bnj937 ( 𝐾 → dom 𝐴 )
22 12 21 syl ( 𝜑 → dom 𝐴 )