Step |
Hyp |
Ref |
Expression |
1 |
|
bnj125.1 |
⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
2 |
|
bnj125.2 |
⊢ ( 𝜑′ ↔ [ 1o / 𝑛 ] 𝜑 ) |
3 |
|
bnj125.3 |
⊢ ( 𝜑″ ↔ [ 𝐹 / 𝑓 ] 𝜑′ ) |
4 |
|
bnj125.4 |
⊢ 𝐹 = { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } |
5 |
2
|
sbcbii |
⊢ ( [ 𝐹 / 𝑓 ] 𝜑′ ↔ [ 𝐹 / 𝑓 ] [ 1o / 𝑛 ] 𝜑 ) |
6 |
|
bnj105 |
⊢ 1o ∈ V |
7 |
1 6
|
bnj91 |
⊢ ( [ 1o / 𝑛 ] 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
8 |
7
|
sbcbii |
⊢ ( [ 𝐹 / 𝑓 ] [ 1o / 𝑛 ] 𝜑 ↔ [ 𝐹 / 𝑓 ] ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
9 |
4
|
bnj95 |
⊢ 𝐹 ∈ V |
10 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ ∅ ) = ( 𝐹 ‘ ∅ ) ) |
11 |
10
|
eqeq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ↔ ( 𝐹 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) ) |
12 |
9 11
|
sbcie |
⊢ ( [ 𝐹 / 𝑓 ] ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ↔ ( 𝐹 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
13 |
8 12
|
bitri |
⊢ ( [ 𝐹 / 𝑓 ] [ 1o / 𝑛 ] 𝜑 ↔ ( 𝐹 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
14 |
5 13
|
bitri |
⊢ ( [ 𝐹 / 𝑓 ] 𝜑′ ↔ ( 𝐹 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
15 |
3 14
|
bitri |
⊢ ( 𝜑″ ↔ ( 𝐹 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |