Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1253.1 |
⊢ 𝐵 = { 𝑑 ∣ ( 𝑑 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) } |
2 |
|
bnj1253.2 |
⊢ 𝑌 = 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
3 |
|
bnj1253.3 |
⊢ 𝐶 = { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
4 |
|
bnj1253.4 |
⊢ 𝐷 = ( dom 𝑔 ∩ dom ℎ ) |
5 |
|
bnj1253.5 |
⊢ 𝐸 = { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } |
6 |
|
bnj1253.6 |
⊢ ( 𝜑 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ ( 𝑔 ↾ 𝐷 ) ≠ ( ℎ ↾ 𝐷 ) ) ) |
7 |
|
bnj1253.7 |
⊢ ( 𝜓 ↔ ( 𝜑 ∧ 𝑥 ∈ 𝐸 ∧ ∀ 𝑦 ∈ 𝐸 ¬ 𝑦 𝑅 𝑥 ) ) |
8 |
6
|
bnj1254 |
⊢ ( 𝜑 → ( 𝑔 ↾ 𝐷 ) ≠ ( ℎ ↾ 𝐷 ) ) |
9 |
1 2 3 4 5 6 7
|
bnj1256 |
⊢ ( 𝜑 → ∃ 𝑑 ∈ 𝐵 𝑔 Fn 𝑑 ) |
10 |
4
|
bnj1292 |
⊢ 𝐷 ⊆ dom 𝑔 |
11 |
|
fndm |
⊢ ( 𝑔 Fn 𝑑 → dom 𝑔 = 𝑑 ) |
12 |
10 11
|
sseqtrid |
⊢ ( 𝑔 Fn 𝑑 → 𝐷 ⊆ 𝑑 ) |
13 |
|
fnssres |
⊢ ( ( 𝑔 Fn 𝑑 ∧ 𝐷 ⊆ 𝑑 ) → ( 𝑔 ↾ 𝐷 ) Fn 𝐷 ) |
14 |
12 13
|
mpdan |
⊢ ( 𝑔 Fn 𝑑 → ( 𝑔 ↾ 𝐷 ) Fn 𝐷 ) |
15 |
9 14
|
bnj31 |
⊢ ( 𝜑 → ∃ 𝑑 ∈ 𝐵 ( 𝑔 ↾ 𝐷 ) Fn 𝐷 ) |
16 |
15
|
bnj1265 |
⊢ ( 𝜑 → ( 𝑔 ↾ 𝐷 ) Fn 𝐷 ) |
17 |
1 2 3 4 5 6 7
|
bnj1259 |
⊢ ( 𝜑 → ∃ 𝑑 ∈ 𝐵 ℎ Fn 𝑑 ) |
18 |
4
|
bnj1293 |
⊢ 𝐷 ⊆ dom ℎ |
19 |
|
fndm |
⊢ ( ℎ Fn 𝑑 → dom ℎ = 𝑑 ) |
20 |
18 19
|
sseqtrid |
⊢ ( ℎ Fn 𝑑 → 𝐷 ⊆ 𝑑 ) |
21 |
|
fnssres |
⊢ ( ( ℎ Fn 𝑑 ∧ 𝐷 ⊆ 𝑑 ) → ( ℎ ↾ 𝐷 ) Fn 𝐷 ) |
22 |
20 21
|
mpdan |
⊢ ( ℎ Fn 𝑑 → ( ℎ ↾ 𝐷 ) Fn 𝐷 ) |
23 |
17 22
|
bnj31 |
⊢ ( 𝜑 → ∃ 𝑑 ∈ 𝐵 ( ℎ ↾ 𝐷 ) Fn 𝐷 ) |
24 |
23
|
bnj1265 |
⊢ ( 𝜑 → ( ℎ ↾ 𝐷 ) Fn 𝐷 ) |
25 |
|
ssid |
⊢ 𝐷 ⊆ 𝐷 |
26 |
|
fvreseq |
⊢ ( ( ( ( 𝑔 ↾ 𝐷 ) Fn 𝐷 ∧ ( ℎ ↾ 𝐷 ) Fn 𝐷 ) ∧ 𝐷 ⊆ 𝐷 ) → ( ( ( 𝑔 ↾ 𝐷 ) ↾ 𝐷 ) = ( ( ℎ ↾ 𝐷 ) ↾ 𝐷 ) ↔ ∀ 𝑥 ∈ 𝐷 ( ( 𝑔 ↾ 𝐷 ) ‘ 𝑥 ) = ( ( ℎ ↾ 𝐷 ) ‘ 𝑥 ) ) ) |
27 |
25 26
|
mpan2 |
⊢ ( ( ( 𝑔 ↾ 𝐷 ) Fn 𝐷 ∧ ( ℎ ↾ 𝐷 ) Fn 𝐷 ) → ( ( ( 𝑔 ↾ 𝐷 ) ↾ 𝐷 ) = ( ( ℎ ↾ 𝐷 ) ↾ 𝐷 ) ↔ ∀ 𝑥 ∈ 𝐷 ( ( 𝑔 ↾ 𝐷 ) ‘ 𝑥 ) = ( ( ℎ ↾ 𝐷 ) ‘ 𝑥 ) ) ) |
28 |
16 24 27
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝑔 ↾ 𝐷 ) ↾ 𝐷 ) = ( ( ℎ ↾ 𝐷 ) ↾ 𝐷 ) ↔ ∀ 𝑥 ∈ 𝐷 ( ( 𝑔 ↾ 𝐷 ) ‘ 𝑥 ) = ( ( ℎ ↾ 𝐷 ) ‘ 𝑥 ) ) ) |
29 |
|
residm |
⊢ ( ( 𝑔 ↾ 𝐷 ) ↾ 𝐷 ) = ( 𝑔 ↾ 𝐷 ) |
30 |
|
residm |
⊢ ( ( ℎ ↾ 𝐷 ) ↾ 𝐷 ) = ( ℎ ↾ 𝐷 ) |
31 |
29 30
|
eqeq12i |
⊢ ( ( ( 𝑔 ↾ 𝐷 ) ↾ 𝐷 ) = ( ( ℎ ↾ 𝐷 ) ↾ 𝐷 ) ↔ ( 𝑔 ↾ 𝐷 ) = ( ℎ ↾ 𝐷 ) ) |
32 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐷 ( ( 𝑔 ↾ 𝐷 ) ‘ 𝑥 ) = ( ( ℎ ↾ 𝐷 ) ‘ 𝑥 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐷 → ( ( 𝑔 ↾ 𝐷 ) ‘ 𝑥 ) = ( ( ℎ ↾ 𝐷 ) ‘ 𝑥 ) ) ) |
33 |
28 31 32
|
3bitr3g |
⊢ ( 𝜑 → ( ( 𝑔 ↾ 𝐷 ) = ( ℎ ↾ 𝐷 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐷 → ( ( 𝑔 ↾ 𝐷 ) ‘ 𝑥 ) = ( ( ℎ ↾ 𝐷 ) ‘ 𝑥 ) ) ) ) |
34 |
|
fvres |
⊢ ( 𝑥 ∈ 𝐷 → ( ( 𝑔 ↾ 𝐷 ) ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) |
35 |
|
fvres |
⊢ ( 𝑥 ∈ 𝐷 → ( ( ℎ ↾ 𝐷 ) ‘ 𝑥 ) = ( ℎ ‘ 𝑥 ) ) |
36 |
34 35
|
eqeq12d |
⊢ ( 𝑥 ∈ 𝐷 → ( ( ( 𝑔 ↾ 𝐷 ) ‘ 𝑥 ) = ( ( ℎ ↾ 𝐷 ) ‘ 𝑥 ) ↔ ( 𝑔 ‘ 𝑥 ) = ( ℎ ‘ 𝑥 ) ) ) |
37 |
36
|
pm5.74i |
⊢ ( ( 𝑥 ∈ 𝐷 → ( ( 𝑔 ↾ 𝐷 ) ‘ 𝑥 ) = ( ( ℎ ↾ 𝐷 ) ‘ 𝑥 ) ) ↔ ( 𝑥 ∈ 𝐷 → ( 𝑔 ‘ 𝑥 ) = ( ℎ ‘ 𝑥 ) ) ) |
38 |
37
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐷 → ( ( 𝑔 ↾ 𝐷 ) ‘ 𝑥 ) = ( ( ℎ ↾ 𝐷 ) ‘ 𝑥 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐷 → ( 𝑔 ‘ 𝑥 ) = ( ℎ ‘ 𝑥 ) ) ) |
39 |
33 38
|
bitrdi |
⊢ ( 𝜑 → ( ( 𝑔 ↾ 𝐷 ) = ( ℎ ↾ 𝐷 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐷 → ( 𝑔 ‘ 𝑥 ) = ( ℎ ‘ 𝑥 ) ) ) ) |
40 |
39
|
necon3abid |
⊢ ( 𝜑 → ( ( 𝑔 ↾ 𝐷 ) ≠ ( ℎ ↾ 𝐷 ) ↔ ¬ ∀ 𝑥 ( 𝑥 ∈ 𝐷 → ( 𝑔 ‘ 𝑥 ) = ( ℎ ‘ 𝑥 ) ) ) ) |
41 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐷 ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐷 ∧ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) ) ) |
42 |
|
pm4.61 |
⊢ ( ¬ ( 𝑥 ∈ 𝐷 → ( 𝑔 ‘ 𝑥 ) = ( ℎ ‘ 𝑥 ) ) ↔ ( 𝑥 ∈ 𝐷 ∧ ¬ ( 𝑔 ‘ 𝑥 ) = ( ℎ ‘ 𝑥 ) ) ) |
43 |
|
df-ne |
⊢ ( ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) ↔ ¬ ( 𝑔 ‘ 𝑥 ) = ( ℎ ‘ 𝑥 ) ) |
44 |
43
|
anbi2i |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) ) ↔ ( 𝑥 ∈ 𝐷 ∧ ¬ ( 𝑔 ‘ 𝑥 ) = ( ℎ ‘ 𝑥 ) ) ) |
45 |
42 44
|
bitr4i |
⊢ ( ¬ ( 𝑥 ∈ 𝐷 → ( 𝑔 ‘ 𝑥 ) = ( ℎ ‘ 𝑥 ) ) ↔ ( 𝑥 ∈ 𝐷 ∧ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) ) ) |
46 |
45
|
exbii |
⊢ ( ∃ 𝑥 ¬ ( 𝑥 ∈ 𝐷 → ( 𝑔 ‘ 𝑥 ) = ( ℎ ‘ 𝑥 ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐷 ∧ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) ) ) |
47 |
|
exnal |
⊢ ( ∃ 𝑥 ¬ ( 𝑥 ∈ 𝐷 → ( 𝑔 ‘ 𝑥 ) = ( ℎ ‘ 𝑥 ) ) ↔ ¬ ∀ 𝑥 ( 𝑥 ∈ 𝐷 → ( 𝑔 ‘ 𝑥 ) = ( ℎ ‘ 𝑥 ) ) ) |
48 |
41 46 47
|
3bitr2ri |
⊢ ( ¬ ∀ 𝑥 ( 𝑥 ∈ 𝐷 → ( 𝑔 ‘ 𝑥 ) = ( ℎ ‘ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐷 ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) ) |
49 |
40 48
|
bitrdi |
⊢ ( 𝜑 → ( ( 𝑔 ↾ 𝐷 ) ≠ ( ℎ ↾ 𝐷 ) ↔ ∃ 𝑥 ∈ 𝐷 ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) ) ) |
50 |
8 49
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐷 ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) ) |
51 |
5
|
neeq1i |
⊢ ( 𝐸 ≠ ∅ ↔ { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } ≠ ∅ ) |
52 |
|
rabn0 |
⊢ ( { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } ≠ ∅ ↔ ∃ 𝑥 ∈ 𝐷 ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) ) |
53 |
51 52
|
bitri |
⊢ ( 𝐸 ≠ ∅ ↔ ∃ 𝑥 ∈ 𝐷 ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) ) |
54 |
50 53
|
sylibr |
⊢ ( 𝜑 → 𝐸 ≠ ∅ ) |