| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1253.1 | 
							⊢ 𝐵  =  { 𝑑  ∣  ( 𝑑  ⊆  𝐴  ∧  ∀ 𝑥  ∈  𝑑  pred ( 𝑥 ,  𝐴 ,  𝑅 )  ⊆  𝑑 ) }  | 
						
						
							| 2 | 
							
								
							 | 
							bnj1253.2 | 
							⊢ 𝑌  =  〈 𝑥 ,  ( 𝑓  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) 〉  | 
						
						
							| 3 | 
							
								
							 | 
							bnj1253.3 | 
							⊢ 𝐶  =  { 𝑓  ∣  ∃ 𝑑  ∈  𝐵 ( 𝑓  Fn  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( 𝑓 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑌 ) ) }  | 
						
						
							| 4 | 
							
								
							 | 
							bnj1253.4 | 
							⊢ 𝐷  =  ( dom  𝑔  ∩  dom  ℎ )  | 
						
						
							| 5 | 
							
								
							 | 
							bnj1253.5 | 
							⊢ 𝐸  =  { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) }  | 
						
						
							| 6 | 
							
								
							 | 
							bnj1253.6 | 
							⊢ ( 𝜑  ↔  ( 𝑅  FrSe  𝐴  ∧  𝑔  ∈  𝐶  ∧  ℎ  ∈  𝐶  ∧  ( 𝑔  ↾  𝐷 )  ≠  ( ℎ  ↾  𝐷 ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							bnj1253.7 | 
							⊢ ( 𝜓  ↔  ( 𝜑  ∧  𝑥  ∈  𝐸  ∧  ∀ 𝑦  ∈  𝐸 ¬  𝑦 𝑅 𝑥 ) )  | 
						
						
							| 8 | 
							
								6
							 | 
							bnj1254 | 
							⊢ ( 𝜑  →  ( 𝑔  ↾  𝐷 )  ≠  ( ℎ  ↾  𝐷 ) )  | 
						
						
							| 9 | 
							
								1 2 3 4 5 6 7
							 | 
							bnj1256 | 
							⊢ ( 𝜑  →  ∃ 𝑑  ∈  𝐵 𝑔  Fn  𝑑 )  | 
						
						
							| 10 | 
							
								4
							 | 
							bnj1292 | 
							⊢ 𝐷  ⊆  dom  𝑔  | 
						
						
							| 11 | 
							
								
							 | 
							fndm | 
							⊢ ( 𝑔  Fn  𝑑  →  dom  𝑔  =  𝑑 )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							sseqtrid | 
							⊢ ( 𝑔  Fn  𝑑  →  𝐷  ⊆  𝑑 )  | 
						
						
							| 13 | 
							
								
							 | 
							fnssres | 
							⊢ ( ( 𝑔  Fn  𝑑  ∧  𝐷  ⊆  𝑑 )  →  ( 𝑔  ↾  𝐷 )  Fn  𝐷 )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							mpdan | 
							⊢ ( 𝑔  Fn  𝑑  →  ( 𝑔  ↾  𝐷 )  Fn  𝐷 )  | 
						
						
							| 15 | 
							
								9 14
							 | 
							bnj31 | 
							⊢ ( 𝜑  →  ∃ 𝑑  ∈  𝐵 ( 𝑔  ↾  𝐷 )  Fn  𝐷 )  | 
						
						
							| 16 | 
							
								15
							 | 
							bnj1265 | 
							⊢ ( 𝜑  →  ( 𝑔  ↾  𝐷 )  Fn  𝐷 )  | 
						
						
							| 17 | 
							
								1 2 3 4 5 6 7
							 | 
							bnj1259 | 
							⊢ ( 𝜑  →  ∃ 𝑑  ∈  𝐵 ℎ  Fn  𝑑 )  | 
						
						
							| 18 | 
							
								4
							 | 
							bnj1293 | 
							⊢ 𝐷  ⊆  dom  ℎ  | 
						
						
							| 19 | 
							
								
							 | 
							fndm | 
							⊢ ( ℎ  Fn  𝑑  →  dom  ℎ  =  𝑑 )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							sseqtrid | 
							⊢ ( ℎ  Fn  𝑑  →  𝐷  ⊆  𝑑 )  | 
						
						
							| 21 | 
							
								
							 | 
							fnssres | 
							⊢ ( ( ℎ  Fn  𝑑  ∧  𝐷  ⊆  𝑑 )  →  ( ℎ  ↾  𝐷 )  Fn  𝐷 )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							mpdan | 
							⊢ ( ℎ  Fn  𝑑  →  ( ℎ  ↾  𝐷 )  Fn  𝐷 )  | 
						
						
							| 23 | 
							
								17 22
							 | 
							bnj31 | 
							⊢ ( 𝜑  →  ∃ 𝑑  ∈  𝐵 ( ℎ  ↾  𝐷 )  Fn  𝐷 )  | 
						
						
							| 24 | 
							
								23
							 | 
							bnj1265 | 
							⊢ ( 𝜑  →  ( ℎ  ↾  𝐷 )  Fn  𝐷 )  | 
						
						
							| 25 | 
							
								
							 | 
							ssid | 
							⊢ 𝐷  ⊆  𝐷  | 
						
						
							| 26 | 
							
								
							 | 
							fvreseq | 
							⊢ ( ( ( ( 𝑔  ↾  𝐷 )  Fn  𝐷  ∧  ( ℎ  ↾  𝐷 )  Fn  𝐷 )  ∧  𝐷  ⊆  𝐷 )  →  ( ( ( 𝑔  ↾  𝐷 )  ↾  𝐷 )  =  ( ( ℎ  ↾  𝐷 )  ↾  𝐷 )  ↔  ∀ 𝑥  ∈  𝐷 ( ( 𝑔  ↾  𝐷 ) ‘ 𝑥 )  =  ( ( ℎ  ↾  𝐷 ) ‘ 𝑥 ) ) )  | 
						
						
							| 27 | 
							
								25 26
							 | 
							mpan2 | 
							⊢ ( ( ( 𝑔  ↾  𝐷 )  Fn  𝐷  ∧  ( ℎ  ↾  𝐷 )  Fn  𝐷 )  →  ( ( ( 𝑔  ↾  𝐷 )  ↾  𝐷 )  =  ( ( ℎ  ↾  𝐷 )  ↾  𝐷 )  ↔  ∀ 𝑥  ∈  𝐷 ( ( 𝑔  ↾  𝐷 ) ‘ 𝑥 )  =  ( ( ℎ  ↾  𝐷 ) ‘ 𝑥 ) ) )  | 
						
						
							| 28 | 
							
								16 24 27
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( ( ( 𝑔  ↾  𝐷 )  ↾  𝐷 )  =  ( ( ℎ  ↾  𝐷 )  ↾  𝐷 )  ↔  ∀ 𝑥  ∈  𝐷 ( ( 𝑔  ↾  𝐷 ) ‘ 𝑥 )  =  ( ( ℎ  ↾  𝐷 ) ‘ 𝑥 ) ) )  | 
						
						
							| 29 | 
							
								
							 | 
							residm | 
							⊢ ( ( 𝑔  ↾  𝐷 )  ↾  𝐷 )  =  ( 𝑔  ↾  𝐷 )  | 
						
						
							| 30 | 
							
								
							 | 
							residm | 
							⊢ ( ( ℎ  ↾  𝐷 )  ↾  𝐷 )  =  ( ℎ  ↾  𝐷 )  | 
						
						
							| 31 | 
							
								29 30
							 | 
							eqeq12i | 
							⊢ ( ( ( 𝑔  ↾  𝐷 )  ↾  𝐷 )  =  ( ( ℎ  ↾  𝐷 )  ↾  𝐷 )  ↔  ( 𝑔  ↾  𝐷 )  =  ( ℎ  ↾  𝐷 ) )  | 
						
						
							| 32 | 
							
								
							 | 
							df-ral | 
							⊢ ( ∀ 𝑥  ∈  𝐷 ( ( 𝑔  ↾  𝐷 ) ‘ 𝑥 )  =  ( ( ℎ  ↾  𝐷 ) ‘ 𝑥 )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐷  →  ( ( 𝑔  ↾  𝐷 ) ‘ 𝑥 )  =  ( ( ℎ  ↾  𝐷 ) ‘ 𝑥 ) ) )  | 
						
						
							| 33 | 
							
								28 31 32
							 | 
							3bitr3g | 
							⊢ ( 𝜑  →  ( ( 𝑔  ↾  𝐷 )  =  ( ℎ  ↾  𝐷 )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐷  →  ( ( 𝑔  ↾  𝐷 ) ‘ 𝑥 )  =  ( ( ℎ  ↾  𝐷 ) ‘ 𝑥 ) ) ) )  | 
						
						
							| 34 | 
							
								
							 | 
							fvres | 
							⊢ ( 𝑥  ∈  𝐷  →  ( ( 𝑔  ↾  𝐷 ) ‘ 𝑥 )  =  ( 𝑔 ‘ 𝑥 ) )  | 
						
						
							| 35 | 
							
								
							 | 
							fvres | 
							⊢ ( 𝑥  ∈  𝐷  →  ( ( ℎ  ↾  𝐷 ) ‘ 𝑥 )  =  ( ℎ ‘ 𝑥 ) )  | 
						
						
							| 36 | 
							
								34 35
							 | 
							eqeq12d | 
							⊢ ( 𝑥  ∈  𝐷  →  ( ( ( 𝑔  ↾  𝐷 ) ‘ 𝑥 )  =  ( ( ℎ  ↾  𝐷 ) ‘ 𝑥 )  ↔  ( 𝑔 ‘ 𝑥 )  =  ( ℎ ‘ 𝑥 ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							pm5.74i | 
							⊢ ( ( 𝑥  ∈  𝐷  →  ( ( 𝑔  ↾  𝐷 ) ‘ 𝑥 )  =  ( ( ℎ  ↾  𝐷 ) ‘ 𝑥 ) )  ↔  ( 𝑥  ∈  𝐷  →  ( 𝑔 ‘ 𝑥 )  =  ( ℎ ‘ 𝑥 ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							albii | 
							⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐷  →  ( ( 𝑔  ↾  𝐷 ) ‘ 𝑥 )  =  ( ( ℎ  ↾  𝐷 ) ‘ 𝑥 ) )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐷  →  ( 𝑔 ‘ 𝑥 )  =  ( ℎ ‘ 𝑥 ) ) )  | 
						
						
							| 39 | 
							
								33 38
							 | 
							bitrdi | 
							⊢ ( 𝜑  →  ( ( 𝑔  ↾  𝐷 )  =  ( ℎ  ↾  𝐷 )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐷  →  ( 𝑔 ‘ 𝑥 )  =  ( ℎ ‘ 𝑥 ) ) ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							necon3abid | 
							⊢ ( 𝜑  →  ( ( 𝑔  ↾  𝐷 )  ≠  ( ℎ  ↾  𝐷 )  ↔  ¬  ∀ 𝑥 ( 𝑥  ∈  𝐷  →  ( 𝑔 ‘ 𝑥 )  =  ( ℎ ‘ 𝑥 ) ) ) )  | 
						
						
							| 41 | 
							
								
							 | 
							df-rex | 
							⊢ ( ∃ 𝑥  ∈  𝐷 ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 )  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐷  ∧  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) ) )  | 
						
						
							| 42 | 
							
								
							 | 
							pm4.61 | 
							⊢ ( ¬  ( 𝑥  ∈  𝐷  →  ( 𝑔 ‘ 𝑥 )  =  ( ℎ ‘ 𝑥 ) )  ↔  ( 𝑥  ∈  𝐷  ∧  ¬  ( 𝑔 ‘ 𝑥 )  =  ( ℎ ‘ 𝑥 ) ) )  | 
						
						
							| 43 | 
							
								
							 | 
							df-ne | 
							⊢ ( ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 )  ↔  ¬  ( 𝑔 ‘ 𝑥 )  =  ( ℎ ‘ 𝑥 ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							anbi2i | 
							⊢ ( ( 𝑥  ∈  𝐷  ∧  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) )  ↔  ( 𝑥  ∈  𝐷  ∧  ¬  ( 𝑔 ‘ 𝑥 )  =  ( ℎ ‘ 𝑥 ) ) )  | 
						
						
							| 45 | 
							
								42 44
							 | 
							bitr4i | 
							⊢ ( ¬  ( 𝑥  ∈  𝐷  →  ( 𝑔 ‘ 𝑥 )  =  ( ℎ ‘ 𝑥 ) )  ↔  ( 𝑥  ∈  𝐷  ∧  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							exbii | 
							⊢ ( ∃ 𝑥 ¬  ( 𝑥  ∈  𝐷  →  ( 𝑔 ‘ 𝑥 )  =  ( ℎ ‘ 𝑥 ) )  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐷  ∧  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) ) )  | 
						
						
							| 47 | 
							
								
							 | 
							exnal | 
							⊢ ( ∃ 𝑥 ¬  ( 𝑥  ∈  𝐷  →  ( 𝑔 ‘ 𝑥 )  =  ( ℎ ‘ 𝑥 ) )  ↔  ¬  ∀ 𝑥 ( 𝑥  ∈  𝐷  →  ( 𝑔 ‘ 𝑥 )  =  ( ℎ ‘ 𝑥 ) ) )  | 
						
						
							| 48 | 
							
								41 46 47
							 | 
							3bitr2ri | 
							⊢ ( ¬  ∀ 𝑥 ( 𝑥  ∈  𝐷  →  ( 𝑔 ‘ 𝑥 )  =  ( ℎ ‘ 𝑥 ) )  ↔  ∃ 𝑥  ∈  𝐷 ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) )  | 
						
						
							| 49 | 
							
								40 48
							 | 
							bitrdi | 
							⊢ ( 𝜑  →  ( ( 𝑔  ↾  𝐷 )  ≠  ( ℎ  ↾  𝐷 )  ↔  ∃ 𝑥  ∈  𝐷 ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) ) )  | 
						
						
							| 50 | 
							
								8 49
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝐷 ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) )  | 
						
						
							| 51 | 
							
								5
							 | 
							neeq1i | 
							⊢ ( 𝐸  ≠  ∅  ↔  { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) }  ≠  ∅ )  | 
						
						
							| 52 | 
							
								
							 | 
							rabn0 | 
							⊢ ( { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) }  ≠  ∅  ↔  ∃ 𝑥  ∈  𝐷 ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) )  | 
						
						
							| 53 | 
							
								51 52
							 | 
							bitri | 
							⊢ ( 𝐸  ≠  ∅  ↔  ∃ 𝑥  ∈  𝐷 ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) )  | 
						
						
							| 54 | 
							
								50 53
							 | 
							sylibr | 
							⊢ ( 𝜑  →  𝐸  ≠  ∅ )  |