Description: Technical lemma for bnj150 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj126.1 | ⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) | |
bnj126.2 | ⊢ ( 𝜓′ ↔ [ 1o / 𝑛 ] 𝜓 ) | ||
bnj126.3 | ⊢ ( 𝜓″ ↔ [ 𝐹 / 𝑓 ] 𝜓′ ) | ||
bnj126.4 | ⊢ 𝐹 = { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } | ||
Assertion | bnj126 | ⊢ ( 𝜓″ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj126.1 | ⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) | |
2 | bnj126.2 | ⊢ ( 𝜓′ ↔ [ 1o / 𝑛 ] 𝜓 ) | |
3 | bnj126.3 | ⊢ ( 𝜓″ ↔ [ 𝐹 / 𝑓 ] 𝜓′ ) | |
4 | bnj126.4 | ⊢ 𝐹 = { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } | |
5 | 2 | sbcbii | ⊢ ( [ 𝐹 / 𝑓 ] 𝜓′ ↔ [ 𝐹 / 𝑓 ] [ 1o / 𝑛 ] 𝜓 ) |
6 | 4 | bnj95 | ⊢ 𝐹 ∈ V |
7 | 1 6 | bnj106 | ⊢ ( [ 𝐹 / 𝑓 ] [ 1o / 𝑛 ] 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
8 | 3 5 7 | 3bitri | ⊢ ( 𝜓″ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |