Metamath Proof Explorer


Theorem bnj126

Description: Technical lemma for bnj150 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj126.1 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
bnj126.2 ( 𝜓′[ 1o / 𝑛 ] 𝜓 )
bnj126.3 ( 𝜓″[ 𝐹 / 𝑓 ] 𝜓′ )
bnj126.4 𝐹 = { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ }
Assertion bnj126 ( 𝜓″ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝐹 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐹𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 bnj126.1 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
2 bnj126.2 ( 𝜓′[ 1o / 𝑛 ] 𝜓 )
3 bnj126.3 ( 𝜓″[ 𝐹 / 𝑓 ] 𝜓′ )
4 bnj126.4 𝐹 = { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ }
5 2 sbcbii ( [ 𝐹 / 𝑓 ] 𝜓′[ 𝐹 / 𝑓 ] [ 1o / 𝑛 ] 𝜓 )
6 4 bnj95 𝐹 ∈ V
7 1 6 bnj106 ( [ 𝐹 / 𝑓 ] [ 1o / 𝑛 ] 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝐹 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐹𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
8 3 5 7 3bitri ( 𝜓″ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝐹 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐹𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )