Metamath Proof Explorer


Theorem bnj1275

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1275.1 ( 𝜑 → ∃ 𝑥 ( 𝜓𝜒 ) )
bnj1275.2 ( 𝜑 → ∀ 𝑥 𝜑 )
Assertion bnj1275 ( 𝜑 → ∃ 𝑥 ( 𝜑𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 bnj1275.1 ( 𝜑 → ∃ 𝑥 ( 𝜓𝜒 ) )
2 bnj1275.2 ( 𝜑 → ∀ 𝑥 𝜑 )
3 2 1 bnj596 ( 𝜑 → ∃ 𝑥 ( 𝜑 ∧ ( 𝜓𝜒 ) ) )
4 3anass ( ( 𝜑𝜓𝜒 ) ↔ ( 𝜑 ∧ ( 𝜓𝜒 ) ) )
5 3 4 bnj1198 ( 𝜑 → ∃ 𝑥 ( 𝜑𝜓𝜒 ) )