Metamath Proof Explorer
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
bnj1276.1 |
⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) |
|
|
bnj1276.2 |
⊢ ( 𝜓 → ∀ 𝑥 𝜓 ) |
|
|
bnj1276.3 |
⊢ ( 𝜒 → ∀ 𝑥 𝜒 ) |
|
|
bnj1276.4 |
⊢ ( 𝜃 ↔ ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ) |
|
Assertion |
bnj1276 |
⊢ ( 𝜃 → ∀ 𝑥 𝜃 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1276.1 |
⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) |
2 |
|
bnj1276.2 |
⊢ ( 𝜓 → ∀ 𝑥 𝜓 ) |
3 |
|
bnj1276.3 |
⊢ ( 𝜒 → ∀ 𝑥 𝜒 ) |
4 |
|
bnj1276.4 |
⊢ ( 𝜃 ↔ ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ) |
5 |
1 2 3
|
hb3an |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ∀ 𝑥 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ) |
6 |
4 5
|
hbxfrbi |
⊢ ( 𝜃 → ∀ 𝑥 𝜃 ) |