Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1280.1 |
⊢ 𝐵 = { 𝑑 ∣ ( 𝑑 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) } |
2 |
|
bnj1280.2 |
⊢ 𝑌 = 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
3 |
|
bnj1280.3 |
⊢ 𝐶 = { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
4 |
|
bnj1280.4 |
⊢ 𝐷 = ( dom 𝑔 ∩ dom ℎ ) |
5 |
|
bnj1280.5 |
⊢ 𝐸 = { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } |
6 |
|
bnj1280.6 |
⊢ ( 𝜑 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ ( 𝑔 ↾ 𝐷 ) ≠ ( ℎ ↾ 𝐷 ) ) ) |
7 |
|
bnj1280.7 |
⊢ ( 𝜓 ↔ ( 𝜑 ∧ 𝑥 ∈ 𝐸 ∧ ∀ 𝑦 ∈ 𝐸 ¬ 𝑦 𝑅 𝑥 ) ) |
8 |
|
bnj1280.17 |
⊢ ( 𝜓 → ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐸 ) = ∅ ) |
9 |
1 2 3 4 5 6 7
|
bnj1286 |
⊢ ( 𝜓 → pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝐷 ) |
10 |
9
|
sseld |
⊢ ( 𝜓 → ( 𝑧 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) → 𝑧 ∈ 𝐷 ) ) |
11 |
|
disj1 |
⊢ ( ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐸 ) = ∅ ↔ ∀ 𝑧 ( 𝑧 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) → ¬ 𝑧 ∈ 𝐸 ) ) |
12 |
8 11
|
sylib |
⊢ ( 𝜓 → ∀ 𝑧 ( 𝑧 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) → ¬ 𝑧 ∈ 𝐸 ) ) |
13 |
12
|
19.21bi |
⊢ ( 𝜓 → ( 𝑧 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) → ¬ 𝑧 ∈ 𝐸 ) ) |
14 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑔 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑧 ) ) |
15 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( ℎ ‘ 𝑥 ) = ( ℎ ‘ 𝑧 ) ) |
16 |
14 15
|
neeq12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) ↔ ( 𝑔 ‘ 𝑧 ) ≠ ( ℎ ‘ 𝑧 ) ) ) |
17 |
16 5
|
elrab2 |
⊢ ( 𝑧 ∈ 𝐸 ↔ ( 𝑧 ∈ 𝐷 ∧ ( 𝑔 ‘ 𝑧 ) ≠ ( ℎ ‘ 𝑧 ) ) ) |
18 |
17
|
notbii |
⊢ ( ¬ 𝑧 ∈ 𝐸 ↔ ¬ ( 𝑧 ∈ 𝐷 ∧ ( 𝑔 ‘ 𝑧 ) ≠ ( ℎ ‘ 𝑧 ) ) ) |
19 |
|
imnan |
⊢ ( ( 𝑧 ∈ 𝐷 → ¬ ( 𝑔 ‘ 𝑧 ) ≠ ( ℎ ‘ 𝑧 ) ) ↔ ¬ ( 𝑧 ∈ 𝐷 ∧ ( 𝑔 ‘ 𝑧 ) ≠ ( ℎ ‘ 𝑧 ) ) ) |
20 |
|
nne |
⊢ ( ¬ ( 𝑔 ‘ 𝑧 ) ≠ ( ℎ ‘ 𝑧 ) ↔ ( 𝑔 ‘ 𝑧 ) = ( ℎ ‘ 𝑧 ) ) |
21 |
20
|
imbi2i |
⊢ ( ( 𝑧 ∈ 𝐷 → ¬ ( 𝑔 ‘ 𝑧 ) ≠ ( ℎ ‘ 𝑧 ) ) ↔ ( 𝑧 ∈ 𝐷 → ( 𝑔 ‘ 𝑧 ) = ( ℎ ‘ 𝑧 ) ) ) |
22 |
18 19 21
|
3bitr2i |
⊢ ( ¬ 𝑧 ∈ 𝐸 ↔ ( 𝑧 ∈ 𝐷 → ( 𝑔 ‘ 𝑧 ) = ( ℎ ‘ 𝑧 ) ) ) |
23 |
13 22
|
syl6ib |
⊢ ( 𝜓 → ( 𝑧 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) → ( 𝑧 ∈ 𝐷 → ( 𝑔 ‘ 𝑧 ) = ( ℎ ‘ 𝑧 ) ) ) ) |
24 |
10 23
|
mpdd |
⊢ ( 𝜓 → ( 𝑧 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) → ( 𝑔 ‘ 𝑧 ) = ( ℎ ‘ 𝑧 ) ) ) |
25 |
24
|
imp |
⊢ ( ( 𝜓 ∧ 𝑧 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) → ( 𝑔 ‘ 𝑧 ) = ( ℎ ‘ 𝑧 ) ) |
26 |
|
fvres |
⊢ ( 𝑧 ∈ 𝐷 → ( ( 𝑔 ↾ 𝐷 ) ‘ 𝑧 ) = ( 𝑔 ‘ 𝑧 ) ) |
27 |
10 26
|
syl6 |
⊢ ( 𝜓 → ( 𝑧 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) → ( ( 𝑔 ↾ 𝐷 ) ‘ 𝑧 ) = ( 𝑔 ‘ 𝑧 ) ) ) |
28 |
27
|
imp |
⊢ ( ( 𝜓 ∧ 𝑧 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) → ( ( 𝑔 ↾ 𝐷 ) ‘ 𝑧 ) = ( 𝑔 ‘ 𝑧 ) ) |
29 |
|
fvres |
⊢ ( 𝑧 ∈ 𝐷 → ( ( ℎ ↾ 𝐷 ) ‘ 𝑧 ) = ( ℎ ‘ 𝑧 ) ) |
30 |
10 29
|
syl6 |
⊢ ( 𝜓 → ( 𝑧 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) → ( ( ℎ ↾ 𝐷 ) ‘ 𝑧 ) = ( ℎ ‘ 𝑧 ) ) ) |
31 |
30
|
imp |
⊢ ( ( 𝜓 ∧ 𝑧 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) → ( ( ℎ ↾ 𝐷 ) ‘ 𝑧 ) = ( ℎ ‘ 𝑧 ) ) |
32 |
25 28 31
|
3eqtr4d |
⊢ ( ( 𝜓 ∧ 𝑧 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) → ( ( 𝑔 ↾ 𝐷 ) ‘ 𝑧 ) = ( ( ℎ ↾ 𝐷 ) ‘ 𝑧 ) ) |
33 |
32
|
ralrimiva |
⊢ ( 𝜓 → ∀ 𝑧 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ( ( 𝑔 ↾ 𝐷 ) ‘ 𝑧 ) = ( ( ℎ ↾ 𝐷 ) ‘ 𝑧 ) ) |
34 |
9
|
resabs1d |
⊢ ( 𝜓 → ( ( 𝑔 ↾ 𝐷 ) ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) = ( 𝑔 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ) |
35 |
9
|
resabs1d |
⊢ ( 𝜓 → ( ( ℎ ↾ 𝐷 ) ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) = ( ℎ ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ) |
36 |
34 35
|
eqeq12d |
⊢ ( 𝜓 → ( ( ( 𝑔 ↾ 𝐷 ) ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) = ( ( ℎ ↾ 𝐷 ) ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ↔ ( 𝑔 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) = ( ℎ ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ) ) |
37 |
1 2 3 4 5 6 7
|
bnj1256 |
⊢ ( 𝜑 → ∃ 𝑑 ∈ 𝐵 𝑔 Fn 𝑑 ) |
38 |
4
|
bnj1292 |
⊢ 𝐷 ⊆ dom 𝑔 |
39 |
|
fndm |
⊢ ( 𝑔 Fn 𝑑 → dom 𝑔 = 𝑑 ) |
40 |
38 39
|
sseqtrid |
⊢ ( 𝑔 Fn 𝑑 → 𝐷 ⊆ 𝑑 ) |
41 |
|
fnssres |
⊢ ( ( 𝑔 Fn 𝑑 ∧ 𝐷 ⊆ 𝑑 ) → ( 𝑔 ↾ 𝐷 ) Fn 𝐷 ) |
42 |
40 41
|
mpdan |
⊢ ( 𝑔 Fn 𝑑 → ( 𝑔 ↾ 𝐷 ) Fn 𝐷 ) |
43 |
37 42
|
bnj31 |
⊢ ( 𝜑 → ∃ 𝑑 ∈ 𝐵 ( 𝑔 ↾ 𝐷 ) Fn 𝐷 ) |
44 |
43
|
bnj1265 |
⊢ ( 𝜑 → ( 𝑔 ↾ 𝐷 ) Fn 𝐷 ) |
45 |
7 44
|
bnj835 |
⊢ ( 𝜓 → ( 𝑔 ↾ 𝐷 ) Fn 𝐷 ) |
46 |
1 2 3 4 5 6 7
|
bnj1259 |
⊢ ( 𝜑 → ∃ 𝑑 ∈ 𝐵 ℎ Fn 𝑑 ) |
47 |
4
|
bnj1293 |
⊢ 𝐷 ⊆ dom ℎ |
48 |
|
fndm |
⊢ ( ℎ Fn 𝑑 → dom ℎ = 𝑑 ) |
49 |
47 48
|
sseqtrid |
⊢ ( ℎ Fn 𝑑 → 𝐷 ⊆ 𝑑 ) |
50 |
|
fnssres |
⊢ ( ( ℎ Fn 𝑑 ∧ 𝐷 ⊆ 𝑑 ) → ( ℎ ↾ 𝐷 ) Fn 𝐷 ) |
51 |
49 50
|
mpdan |
⊢ ( ℎ Fn 𝑑 → ( ℎ ↾ 𝐷 ) Fn 𝐷 ) |
52 |
46 51
|
bnj31 |
⊢ ( 𝜑 → ∃ 𝑑 ∈ 𝐵 ( ℎ ↾ 𝐷 ) Fn 𝐷 ) |
53 |
52
|
bnj1265 |
⊢ ( 𝜑 → ( ℎ ↾ 𝐷 ) Fn 𝐷 ) |
54 |
7 53
|
bnj835 |
⊢ ( 𝜓 → ( ℎ ↾ 𝐷 ) Fn 𝐷 ) |
55 |
|
fvreseq |
⊢ ( ( ( ( 𝑔 ↾ 𝐷 ) Fn 𝐷 ∧ ( ℎ ↾ 𝐷 ) Fn 𝐷 ) ∧ pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝐷 ) → ( ( ( 𝑔 ↾ 𝐷 ) ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) = ( ( ℎ ↾ 𝐷 ) ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ↔ ∀ 𝑧 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ( ( 𝑔 ↾ 𝐷 ) ‘ 𝑧 ) = ( ( ℎ ↾ 𝐷 ) ‘ 𝑧 ) ) ) |
56 |
45 54 9 55
|
syl21anc |
⊢ ( 𝜓 → ( ( ( 𝑔 ↾ 𝐷 ) ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) = ( ( ℎ ↾ 𝐷 ) ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ↔ ∀ 𝑧 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ( ( 𝑔 ↾ 𝐷 ) ‘ 𝑧 ) = ( ( ℎ ↾ 𝐷 ) ‘ 𝑧 ) ) ) |
57 |
36 56
|
bitr3d |
⊢ ( 𝜓 → ( ( 𝑔 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) = ( ℎ ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ↔ ∀ 𝑧 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ( ( 𝑔 ↾ 𝐷 ) ‘ 𝑧 ) = ( ( ℎ ↾ 𝐷 ) ‘ 𝑧 ) ) ) |
58 |
33 57
|
mpbird |
⊢ ( 𝜓 → ( 𝑔 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) = ( ℎ ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ) |