| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1280.1 | 
							⊢ 𝐵  =  { 𝑑  ∣  ( 𝑑  ⊆  𝐴  ∧  ∀ 𝑥  ∈  𝑑  pred ( 𝑥 ,  𝐴 ,  𝑅 )  ⊆  𝑑 ) }  | 
						
						
							| 2 | 
							
								
							 | 
							bnj1280.2 | 
							⊢ 𝑌  =  〈 𝑥 ,  ( 𝑓  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) 〉  | 
						
						
							| 3 | 
							
								
							 | 
							bnj1280.3 | 
							⊢ 𝐶  =  { 𝑓  ∣  ∃ 𝑑  ∈  𝐵 ( 𝑓  Fn  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( 𝑓 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑌 ) ) }  | 
						
						
							| 4 | 
							
								
							 | 
							bnj1280.4 | 
							⊢ 𝐷  =  ( dom  𝑔  ∩  dom  ℎ )  | 
						
						
							| 5 | 
							
								
							 | 
							bnj1280.5 | 
							⊢ 𝐸  =  { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) }  | 
						
						
							| 6 | 
							
								
							 | 
							bnj1280.6 | 
							⊢ ( 𝜑  ↔  ( 𝑅  FrSe  𝐴  ∧  𝑔  ∈  𝐶  ∧  ℎ  ∈  𝐶  ∧  ( 𝑔  ↾  𝐷 )  ≠  ( ℎ  ↾  𝐷 ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							bnj1280.7 | 
							⊢ ( 𝜓  ↔  ( 𝜑  ∧  𝑥  ∈  𝐸  ∧  ∀ 𝑦  ∈  𝐸 ¬  𝑦 𝑅 𝑥 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							bnj1280.17 | 
							⊢ ( 𝜓  →  (  pred ( 𝑥 ,  𝐴 ,  𝑅 )  ∩  𝐸 )  =  ∅ )  | 
						
						
							| 9 | 
							
								1 2 3 4 5 6 7
							 | 
							bnj1286 | 
							⊢ ( 𝜓  →   pred ( 𝑥 ,  𝐴 ,  𝑅 )  ⊆  𝐷 )  | 
						
						
							| 10 | 
							
								9
							 | 
							sseld | 
							⊢ ( 𝜓  →  ( 𝑧  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 )  →  𝑧  ∈  𝐷 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							disj1 | 
							⊢ ( (  pred ( 𝑥 ,  𝐴 ,  𝑅 )  ∩  𝐸 )  =  ∅  ↔  ∀ 𝑧 ( 𝑧  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 )  →  ¬  𝑧  ∈  𝐸 ) )  | 
						
						
							| 12 | 
							
								8 11
							 | 
							sylib | 
							⊢ ( 𝜓  →  ∀ 𝑧 ( 𝑧  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 )  →  ¬  𝑧  ∈  𝐸 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							19.21bi | 
							⊢ ( 𝜓  →  ( 𝑧  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 )  →  ¬  𝑧  ∈  𝐸 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑥  =  𝑧  →  ( 𝑔 ‘ 𝑥 )  =  ( 𝑔 ‘ 𝑧 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑥  =  𝑧  →  ( ℎ ‘ 𝑥 )  =  ( ℎ ‘ 𝑧 ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							neeq12d | 
							⊢ ( 𝑥  =  𝑧  →  ( ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 )  ↔  ( 𝑔 ‘ 𝑧 )  ≠  ( ℎ ‘ 𝑧 ) ) )  | 
						
						
							| 17 | 
							
								16 5
							 | 
							elrab2 | 
							⊢ ( 𝑧  ∈  𝐸  ↔  ( 𝑧  ∈  𝐷  ∧  ( 𝑔 ‘ 𝑧 )  ≠  ( ℎ ‘ 𝑧 ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							notbii | 
							⊢ ( ¬  𝑧  ∈  𝐸  ↔  ¬  ( 𝑧  ∈  𝐷  ∧  ( 𝑔 ‘ 𝑧 )  ≠  ( ℎ ‘ 𝑧 ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							imnan | 
							⊢ ( ( 𝑧  ∈  𝐷  →  ¬  ( 𝑔 ‘ 𝑧 )  ≠  ( ℎ ‘ 𝑧 ) )  ↔  ¬  ( 𝑧  ∈  𝐷  ∧  ( 𝑔 ‘ 𝑧 )  ≠  ( ℎ ‘ 𝑧 ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							nne | 
							⊢ ( ¬  ( 𝑔 ‘ 𝑧 )  ≠  ( ℎ ‘ 𝑧 )  ↔  ( 𝑔 ‘ 𝑧 )  =  ( ℎ ‘ 𝑧 ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							imbi2i | 
							⊢ ( ( 𝑧  ∈  𝐷  →  ¬  ( 𝑔 ‘ 𝑧 )  ≠  ( ℎ ‘ 𝑧 ) )  ↔  ( 𝑧  ∈  𝐷  →  ( 𝑔 ‘ 𝑧 )  =  ( ℎ ‘ 𝑧 ) ) )  | 
						
						
							| 22 | 
							
								18 19 21
							 | 
							3bitr2i | 
							⊢ ( ¬  𝑧  ∈  𝐸  ↔  ( 𝑧  ∈  𝐷  →  ( 𝑔 ‘ 𝑧 )  =  ( ℎ ‘ 𝑧 ) ) )  | 
						
						
							| 23 | 
							
								13 22
							 | 
							imbitrdi | 
							⊢ ( 𝜓  →  ( 𝑧  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 )  →  ( 𝑧  ∈  𝐷  →  ( 𝑔 ‘ 𝑧 )  =  ( ℎ ‘ 𝑧 ) ) ) )  | 
						
						
							| 24 | 
							
								10 23
							 | 
							mpdd | 
							⊢ ( 𝜓  →  ( 𝑧  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 )  →  ( 𝑔 ‘ 𝑧 )  =  ( ℎ ‘ 𝑧 ) ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							imp | 
							⊢ ( ( 𝜓  ∧  𝑧  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 ) )  →  ( 𝑔 ‘ 𝑧 )  =  ( ℎ ‘ 𝑧 ) )  | 
						
						
							| 26 | 
							
								
							 | 
							fvres | 
							⊢ ( 𝑧  ∈  𝐷  →  ( ( 𝑔  ↾  𝐷 ) ‘ 𝑧 )  =  ( 𝑔 ‘ 𝑧 ) )  | 
						
						
							| 27 | 
							
								10 26
							 | 
							syl6 | 
							⊢ ( 𝜓  →  ( 𝑧  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 )  →  ( ( 𝑔  ↾  𝐷 ) ‘ 𝑧 )  =  ( 𝑔 ‘ 𝑧 ) ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							imp | 
							⊢ ( ( 𝜓  ∧  𝑧  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 ) )  →  ( ( 𝑔  ↾  𝐷 ) ‘ 𝑧 )  =  ( 𝑔 ‘ 𝑧 ) )  | 
						
						
							| 29 | 
							
								
							 | 
							fvres | 
							⊢ ( 𝑧  ∈  𝐷  →  ( ( ℎ  ↾  𝐷 ) ‘ 𝑧 )  =  ( ℎ ‘ 𝑧 ) )  | 
						
						
							| 30 | 
							
								10 29
							 | 
							syl6 | 
							⊢ ( 𝜓  →  ( 𝑧  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 )  →  ( ( ℎ  ↾  𝐷 ) ‘ 𝑧 )  =  ( ℎ ‘ 𝑧 ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							imp | 
							⊢ ( ( 𝜓  ∧  𝑧  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 ) )  →  ( ( ℎ  ↾  𝐷 ) ‘ 𝑧 )  =  ( ℎ ‘ 𝑧 ) )  | 
						
						
							| 32 | 
							
								25 28 31
							 | 
							3eqtr4d | 
							⊢ ( ( 𝜓  ∧  𝑧  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 ) )  →  ( ( 𝑔  ↾  𝐷 ) ‘ 𝑧 )  =  ( ( ℎ  ↾  𝐷 ) ‘ 𝑧 ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							ralrimiva | 
							⊢ ( 𝜓  →  ∀ 𝑧  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ( ( 𝑔  ↾  𝐷 ) ‘ 𝑧 )  =  ( ( ℎ  ↾  𝐷 ) ‘ 𝑧 ) )  | 
						
						
							| 34 | 
							
								9
							 | 
							resabs1d | 
							⊢ ( 𝜓  →  ( ( 𝑔  ↾  𝐷 )  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) )  =  ( 𝑔  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 35 | 
							
								9
							 | 
							resabs1d | 
							⊢ ( 𝜓  →  ( ( ℎ  ↾  𝐷 )  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) )  =  ( ℎ  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 36 | 
							
								34 35
							 | 
							eqeq12d | 
							⊢ ( 𝜓  →  ( ( ( 𝑔  ↾  𝐷 )  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) )  =  ( ( ℎ  ↾  𝐷 )  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) )  ↔  ( 𝑔  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) )  =  ( ℎ  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) ) )  | 
						
						
							| 37 | 
							
								1 2 3 4 5 6 7
							 | 
							bnj1256 | 
							⊢ ( 𝜑  →  ∃ 𝑑  ∈  𝐵 𝑔  Fn  𝑑 )  | 
						
						
							| 38 | 
							
								4
							 | 
							bnj1292 | 
							⊢ 𝐷  ⊆  dom  𝑔  | 
						
						
							| 39 | 
							
								
							 | 
							fndm | 
							⊢ ( 𝑔  Fn  𝑑  →  dom  𝑔  =  𝑑 )  | 
						
						
							| 40 | 
							
								38 39
							 | 
							sseqtrid | 
							⊢ ( 𝑔  Fn  𝑑  →  𝐷  ⊆  𝑑 )  | 
						
						
							| 41 | 
							
								
							 | 
							fnssres | 
							⊢ ( ( 𝑔  Fn  𝑑  ∧  𝐷  ⊆  𝑑 )  →  ( 𝑔  ↾  𝐷 )  Fn  𝐷 )  | 
						
						
							| 42 | 
							
								40 41
							 | 
							mpdan | 
							⊢ ( 𝑔  Fn  𝑑  →  ( 𝑔  ↾  𝐷 )  Fn  𝐷 )  | 
						
						
							| 43 | 
							
								37 42
							 | 
							bnj31 | 
							⊢ ( 𝜑  →  ∃ 𝑑  ∈  𝐵 ( 𝑔  ↾  𝐷 )  Fn  𝐷 )  | 
						
						
							| 44 | 
							
								43
							 | 
							bnj1265 | 
							⊢ ( 𝜑  →  ( 𝑔  ↾  𝐷 )  Fn  𝐷 )  | 
						
						
							| 45 | 
							
								7 44
							 | 
							bnj835 | 
							⊢ ( 𝜓  →  ( 𝑔  ↾  𝐷 )  Fn  𝐷 )  | 
						
						
							| 46 | 
							
								1 2 3 4 5 6 7
							 | 
							bnj1259 | 
							⊢ ( 𝜑  →  ∃ 𝑑  ∈  𝐵 ℎ  Fn  𝑑 )  | 
						
						
							| 47 | 
							
								4
							 | 
							bnj1293 | 
							⊢ 𝐷  ⊆  dom  ℎ  | 
						
						
							| 48 | 
							
								
							 | 
							fndm | 
							⊢ ( ℎ  Fn  𝑑  →  dom  ℎ  =  𝑑 )  | 
						
						
							| 49 | 
							
								47 48
							 | 
							sseqtrid | 
							⊢ ( ℎ  Fn  𝑑  →  𝐷  ⊆  𝑑 )  | 
						
						
							| 50 | 
							
								
							 | 
							fnssres | 
							⊢ ( ( ℎ  Fn  𝑑  ∧  𝐷  ⊆  𝑑 )  →  ( ℎ  ↾  𝐷 )  Fn  𝐷 )  | 
						
						
							| 51 | 
							
								49 50
							 | 
							mpdan | 
							⊢ ( ℎ  Fn  𝑑  →  ( ℎ  ↾  𝐷 )  Fn  𝐷 )  | 
						
						
							| 52 | 
							
								46 51
							 | 
							bnj31 | 
							⊢ ( 𝜑  →  ∃ 𝑑  ∈  𝐵 ( ℎ  ↾  𝐷 )  Fn  𝐷 )  | 
						
						
							| 53 | 
							
								52
							 | 
							bnj1265 | 
							⊢ ( 𝜑  →  ( ℎ  ↾  𝐷 )  Fn  𝐷 )  | 
						
						
							| 54 | 
							
								7 53
							 | 
							bnj835 | 
							⊢ ( 𝜓  →  ( ℎ  ↾  𝐷 )  Fn  𝐷 )  | 
						
						
							| 55 | 
							
								
							 | 
							fvreseq | 
							⊢ ( ( ( ( 𝑔  ↾  𝐷 )  Fn  𝐷  ∧  ( ℎ  ↾  𝐷 )  Fn  𝐷 )  ∧   pred ( 𝑥 ,  𝐴 ,  𝑅 )  ⊆  𝐷 )  →  ( ( ( 𝑔  ↾  𝐷 )  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) )  =  ( ( ℎ  ↾  𝐷 )  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) )  ↔  ∀ 𝑧  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ( ( 𝑔  ↾  𝐷 ) ‘ 𝑧 )  =  ( ( ℎ  ↾  𝐷 ) ‘ 𝑧 ) ) )  | 
						
						
							| 56 | 
							
								45 54 9 55
							 | 
							syl21anc | 
							⊢ ( 𝜓  →  ( ( ( 𝑔  ↾  𝐷 )  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) )  =  ( ( ℎ  ↾  𝐷 )  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) )  ↔  ∀ 𝑧  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ( ( 𝑔  ↾  𝐷 ) ‘ 𝑧 )  =  ( ( ℎ  ↾  𝐷 ) ‘ 𝑧 ) ) )  | 
						
						
							| 57 | 
							
								36 56
							 | 
							bitr3d | 
							⊢ ( 𝜓  →  ( ( 𝑔  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) )  =  ( ℎ  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) )  ↔  ∀ 𝑧  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ( ( 𝑔  ↾  𝐷 ) ‘ 𝑧 )  =  ( ( ℎ  ↾  𝐷 ) ‘ 𝑧 ) ) )  | 
						
						
							| 58 | 
							
								33 57
							 | 
							mpbird | 
							⊢ ( 𝜓  →  ( 𝑔  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) )  =  ( ℎ  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) )  |