Metamath Proof Explorer


Theorem bnj1280

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1280.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
bnj1280.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
bnj1280.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
bnj1280.4 𝐷 = ( dom 𝑔 ∩ dom )
bnj1280.5 𝐸 = { 𝑥𝐷 ∣ ( 𝑔𝑥 ) ≠ ( 𝑥 ) }
bnj1280.6 ( 𝜑 ↔ ( 𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ ( 𝑔𝐷 ) ≠ ( 𝐷 ) ) )
bnj1280.7 ( 𝜓 ↔ ( 𝜑𝑥𝐸 ∧ ∀ 𝑦𝐸 ¬ 𝑦 𝑅 𝑥 ) )
bnj1280.17 ( 𝜓 → ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐸 ) = ∅ )
Assertion bnj1280 ( 𝜓 → ( 𝑔 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) = ( ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 bnj1280.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
2 bnj1280.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
3 bnj1280.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
4 bnj1280.4 𝐷 = ( dom 𝑔 ∩ dom )
5 bnj1280.5 𝐸 = { 𝑥𝐷 ∣ ( 𝑔𝑥 ) ≠ ( 𝑥 ) }
6 bnj1280.6 ( 𝜑 ↔ ( 𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ ( 𝑔𝐷 ) ≠ ( 𝐷 ) ) )
7 bnj1280.7 ( 𝜓 ↔ ( 𝜑𝑥𝐸 ∧ ∀ 𝑦𝐸 ¬ 𝑦 𝑅 𝑥 ) )
8 bnj1280.17 ( 𝜓 → ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐸 ) = ∅ )
9 1 2 3 4 5 6 7 bnj1286 ( 𝜓 → pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝐷 )
10 9 sseld ( 𝜓 → ( 𝑧 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) → 𝑧𝐷 ) )
11 disj1 ( ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐸 ) = ∅ ↔ ∀ 𝑧 ( 𝑧 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) → ¬ 𝑧𝐸 ) )
12 8 11 sylib ( 𝜓 → ∀ 𝑧 ( 𝑧 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) → ¬ 𝑧𝐸 ) )
13 12 19.21bi ( 𝜓 → ( 𝑧 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) → ¬ 𝑧𝐸 ) )
14 fveq2 ( 𝑥 = 𝑧 → ( 𝑔𝑥 ) = ( 𝑔𝑧 ) )
15 fveq2 ( 𝑥 = 𝑧 → ( 𝑥 ) = ( 𝑧 ) )
16 14 15 neeq12d ( 𝑥 = 𝑧 → ( ( 𝑔𝑥 ) ≠ ( 𝑥 ) ↔ ( 𝑔𝑧 ) ≠ ( 𝑧 ) ) )
17 16 5 elrab2 ( 𝑧𝐸 ↔ ( 𝑧𝐷 ∧ ( 𝑔𝑧 ) ≠ ( 𝑧 ) ) )
18 17 notbii ( ¬ 𝑧𝐸 ↔ ¬ ( 𝑧𝐷 ∧ ( 𝑔𝑧 ) ≠ ( 𝑧 ) ) )
19 imnan ( ( 𝑧𝐷 → ¬ ( 𝑔𝑧 ) ≠ ( 𝑧 ) ) ↔ ¬ ( 𝑧𝐷 ∧ ( 𝑔𝑧 ) ≠ ( 𝑧 ) ) )
20 nne ( ¬ ( 𝑔𝑧 ) ≠ ( 𝑧 ) ↔ ( 𝑔𝑧 ) = ( 𝑧 ) )
21 20 imbi2i ( ( 𝑧𝐷 → ¬ ( 𝑔𝑧 ) ≠ ( 𝑧 ) ) ↔ ( 𝑧𝐷 → ( 𝑔𝑧 ) = ( 𝑧 ) ) )
22 18 19 21 3bitr2i ( ¬ 𝑧𝐸 ↔ ( 𝑧𝐷 → ( 𝑔𝑧 ) = ( 𝑧 ) ) )
23 13 22 syl6ib ( 𝜓 → ( 𝑧 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) → ( 𝑧𝐷 → ( 𝑔𝑧 ) = ( 𝑧 ) ) ) )
24 10 23 mpdd ( 𝜓 → ( 𝑧 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) → ( 𝑔𝑧 ) = ( 𝑧 ) ) )
25 24 imp ( ( 𝜓𝑧 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) → ( 𝑔𝑧 ) = ( 𝑧 ) )
26 fvres ( 𝑧𝐷 → ( ( 𝑔𝐷 ) ‘ 𝑧 ) = ( 𝑔𝑧 ) )
27 10 26 syl6 ( 𝜓 → ( 𝑧 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) → ( ( 𝑔𝐷 ) ‘ 𝑧 ) = ( 𝑔𝑧 ) ) )
28 27 imp ( ( 𝜓𝑧 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) → ( ( 𝑔𝐷 ) ‘ 𝑧 ) = ( 𝑔𝑧 ) )
29 fvres ( 𝑧𝐷 → ( ( 𝐷 ) ‘ 𝑧 ) = ( 𝑧 ) )
30 10 29 syl6 ( 𝜓 → ( 𝑧 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) → ( ( 𝐷 ) ‘ 𝑧 ) = ( 𝑧 ) ) )
31 30 imp ( ( 𝜓𝑧 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) → ( ( 𝐷 ) ‘ 𝑧 ) = ( 𝑧 ) )
32 25 28 31 3eqtr4d ( ( 𝜓𝑧 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) → ( ( 𝑔𝐷 ) ‘ 𝑧 ) = ( ( 𝐷 ) ‘ 𝑧 ) )
33 32 ralrimiva ( 𝜓 → ∀ 𝑧 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ( ( 𝑔𝐷 ) ‘ 𝑧 ) = ( ( 𝐷 ) ‘ 𝑧 ) )
34 9 resabs1d ( 𝜓 → ( ( 𝑔𝐷 ) ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) = ( 𝑔 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) )
35 9 resabs1d ( 𝜓 → ( ( 𝐷 ) ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) = ( ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) )
36 34 35 eqeq12d ( 𝜓 → ( ( ( 𝑔𝐷 ) ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) = ( ( 𝐷 ) ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ↔ ( 𝑔 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) = ( ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ) )
37 1 2 3 4 5 6 7 bnj1256 ( 𝜑 → ∃ 𝑑𝐵 𝑔 Fn 𝑑 )
38 4 bnj1292 𝐷 ⊆ dom 𝑔
39 fndm ( 𝑔 Fn 𝑑 → dom 𝑔 = 𝑑 )
40 38 39 sseqtrid ( 𝑔 Fn 𝑑𝐷𝑑 )
41 fnssres ( ( 𝑔 Fn 𝑑𝐷𝑑 ) → ( 𝑔𝐷 ) Fn 𝐷 )
42 40 41 mpdan ( 𝑔 Fn 𝑑 → ( 𝑔𝐷 ) Fn 𝐷 )
43 37 42 bnj31 ( 𝜑 → ∃ 𝑑𝐵 ( 𝑔𝐷 ) Fn 𝐷 )
44 43 bnj1265 ( 𝜑 → ( 𝑔𝐷 ) Fn 𝐷 )
45 7 44 bnj835 ( 𝜓 → ( 𝑔𝐷 ) Fn 𝐷 )
46 1 2 3 4 5 6 7 bnj1259 ( 𝜑 → ∃ 𝑑𝐵 Fn 𝑑 )
47 4 bnj1293 𝐷 ⊆ dom
48 fndm ( Fn 𝑑 → dom = 𝑑 )
49 47 48 sseqtrid ( Fn 𝑑𝐷𝑑 )
50 fnssres ( ( Fn 𝑑𝐷𝑑 ) → ( 𝐷 ) Fn 𝐷 )
51 49 50 mpdan ( Fn 𝑑 → ( 𝐷 ) Fn 𝐷 )
52 46 51 bnj31 ( 𝜑 → ∃ 𝑑𝐵 ( 𝐷 ) Fn 𝐷 )
53 52 bnj1265 ( 𝜑 → ( 𝐷 ) Fn 𝐷 )
54 7 53 bnj835 ( 𝜓 → ( 𝐷 ) Fn 𝐷 )
55 fvreseq ( ( ( ( 𝑔𝐷 ) Fn 𝐷 ∧ ( 𝐷 ) Fn 𝐷 ) ∧ pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝐷 ) → ( ( ( 𝑔𝐷 ) ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) = ( ( 𝐷 ) ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ↔ ∀ 𝑧 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ( ( 𝑔𝐷 ) ‘ 𝑧 ) = ( ( 𝐷 ) ‘ 𝑧 ) ) )
56 45 54 9 55 syl21anc ( 𝜓 → ( ( ( 𝑔𝐷 ) ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) = ( ( 𝐷 ) ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ↔ ∀ 𝑧 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ( ( 𝑔𝐷 ) ‘ 𝑧 ) = ( ( 𝐷 ) ‘ 𝑧 ) ) )
57 36 56 bitr3d ( 𝜓 → ( ( 𝑔 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) = ( ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ↔ ∀ 𝑧 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ( ( 𝑔𝐷 ) ‘ 𝑧 ) = ( ( 𝐷 ) ‘ 𝑧 ) ) )
58 33 57 mpbird ( 𝜓 → ( 𝑔 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) = ( ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) )